
Lectures Laboratory Sessions

«« RREEAADD LLEESSSS

CCiirrccuuiitt ttooppoollooggyy,, ccoonnssttiittuuttiivvee rreellaattiioonnss,, aanndd nnooddaall aannaallyyssiiss

1st Lecture

In this lecture we are going get acquainted with the concept of concentrated circuits, Kirchoff current and

voltage law and constitutive relations of circuit elements. These equations form the mathematical model of a

circcuit. The number of equations and unknowns can be greatly reduced if we introduce nodal voltages (which

results in the nodal analysis approach to circuit equations). This also bring some restrictions that we are going to

loosen up a bit in later lectures.

To make things more simple we focus on linear circuits for now. This makes it possible for us to write the

equations in matrix form. By taking a long hard look at the coefficient matrix and the vector of right-hand values

we observe simple patterns (element footprints) that enable us to construct the system of equations on the fly.

Notation

Currents will be denoted by letter I, voltages by U, and potentials by V. Lowercase letters denote voltages and

currents in the time domain, i.e. i(t) and u(t). Capital letters with uppercase indices denote operating point (DC)

voltages and currents, i.e. U and I . When subscripts are numbers we denote the DC voltages and currents

with an addittional subscript Q (quiescent), i.e. U and I .

When working in frequency domain we will be using sinunsoidal voltages with given magnitude and phase

expressed with a complexor (i.e. complex value representing a sinusoidal signal). Such voltages and currents will

be denoted by a capital letter with lowercase indices, i.e. U and I . A sinusoidal signal of the form

CCiirrccuuiitt AAnnaallyyssiiss aanndd OOppttiimmiizzaattiioonn
International Course

W1, October

CE C

12Q 5Q

ce c

x (t) = A cos(ωt + φ)CD

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

1 of 69 9/23/19, 11:53 AM

corresponds to complexor

where j is the imaginary unit (i.e. j =-1). Note that a complexor does not contain any information on the frequency

of a signal. One can convert a complexor back to time-domain by applying the following formula

Kichoff's laws

Throughout this series of lectures we are going to assume that our circuits are small compared to the

wavelength of electromagnetic radiation that corresponds to the highest frequency ocurring in our circuit's

response. This is a reasonable assumption for a large class of circuits. Under this assumption we can introduce

nodes in our circuit. A node is a point where elements are connected to each other.

Fig. 1: Kirchoff's current law. The sum of currents flowing into/from a node must be zero.

A node must remain electically neutral (i.e. cannot accumulate charge) when currents flows into a node and out

from a node. This requirement arises from charge conservation and is formally stated in Kirchoff's current law

(KCL). For a node depicted in Fig. 1 KCL can be written as

By convention we use the positive sign for currents flowing out from a node, while for currents flowing into a

node we use the negative sign. It doesn't matter if, say, i actually flows into the node. In such case if we solve for

i we are going to get a negative value which indicates that the current flows in the opposite direction as denoted

in the figure.

Fig. 2: Kirchoff's voltage law. Three independent paths in a circuit with 4 nodes.

Among all nodes in a circuit we designate one to be the reference node. In schematic we usually denote this by

connecting a ground symbol to that node. The voltage between two arbitrary nodes is referred to as branch

voltage. Of course we are not interested in all n(n-1) branch voltages that can be constructed between n nodes.

We are interested only in a subset of m branch voltages that comprises the branch voltages of the circuit's

elements.

Suppose a circuit comprises n nodes. At this point a question arises: how many KCL equations one must write to

X = Aecd
jφ

2

x (t) = Re(X e)CD cd
jω

i + i + i + i − i − i = 01 2 3 4 5 6

1

1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

2 of 69 9/23/19, 11:53 AM

formulate the charge conservation law for a circuit? The answer is straightforward - n. But not all of these

equations are linearly independent, i.e. some of them can be expressed as linear combinations of others. Actually

only n-1 KCL equations are linearly independent. Due to this we omit writing down the KCL equation for the

reference node.

If our assumption regarding the size of the circuit compared to the wavelenth of electromagnetic radiation holds

then we can assume that the electric field has no curl. Now choose any closed path through the circuit. Adding

up branch voltages along a closed path must always result in zero. This requirement is also referred to as the

Kirchoff's voltage law (KVL). Take, for instance, the circuit in Fig. 2. We can define 3 closed paths in this circuit.

Adding up the branch voltages along any of the paths should result in 0. For the first path (Fig. 2, left) we can

write

We denoted branch voltages where we visited the + sign before the - sign as positive, and the remaining branch

voltages as negative. Again when we solve for a particular branch voltage and get a negative result this means

that the actual voltage has its + sign where the - sign is drawn in the schematic.

We can write two more KVL equations for this circuit (cf. Fig. 2, right).

Again, we can ask ourselves the question: how many KVL equations do I need to write? The answer is not as

simple as with KCL equations. But if we assume we have m branch voltages then we need to write m-n+1 KVL

equations. And not just any KVL equations. The closed paths used for writing down these equations must be

independent. This means that no closed path must be a combination of other closed paths. In Fig. 2 (right) there

are two closed path. If we assume another closed path that starts at the + sign of u , goes over u , u , u , u ,

u , and u we get the following KVL equation

we can see that this equation is actually the sum of the previous two equations. This is because the closed path

that was used for writing down this equation is a linear combination of the closed paths in Fig 2 (right).

At this point we are faced with two problems

1. How to choose the closed paths for writing down the KVL equations_

2. There are many branches in a typical circuit resulting in many branch voltages. Can we reduce the number

of variables by any means?

To answer these questions let us introduce node potentials. A node potential (or nodal voltage) is defined as the

voltage between a node and the reference node. We denote nodal voltages by letter V. The nodal voltage of the

reference node is by definition 0. If we express all branch voltages with nodal voltages we automatically satisfy

KVL for any closed path.

Think about it! A branch voltage for one branch (between nodes 1 and 2) along a path can be expressed as V -V .

The next branch (between nodes 2 and 3) can be expressed as V -V . When we add up these two branch

voltages in a KVL equation the two V terms will cancel out. As we finish adding up all the branch voltages along

a closed path all nodal voltages will simply cancel out and the KVL equation will be satisfied. This means that if

we introduce nodal voltages and express all branch voltages with them we no longer need to write down KVL

equations.

This is, of course, great news. Not only we no longer have to choose m-n+1 independent closed paths in the

circuit. We just got rid of m-n+1 equations!

u + u − u = 0R1 R2 SRC

u + u − uR1 BC RC

u − u − uR2 RE BE

= 0

= 0

RC R1 R2 RE BE

BC RC

u + u − u − u + u − u = 0R1 R2 RE BE BC RC

1 2

2 3

2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

3 of 69 9/23/19, 11:53 AM

Fig. 3: Nodal voltages and branch currents for the circuit in Fig. 2.

As an excercise let us write down the n-1=4 KCL equations for the circuit in Fig. 3. This gives us n-1=4 equations

we later refer to as group A.

Now let us also express m=7 branch voltages with n-1 nodal voltages. These equations will be our "surrogate" for

the KVL equations. Note that the nodal voltage of the reference node is 0. This gives us m=7 equations we later

refer to as group B.

Unfortunately the KCL and the "surrogate" KVL equations are not enough for solving the circuit. We have m=7

branch voltages, n-1=4 nodal voltages, and b=8 branch currents appearing in KCL equations. All in all we have

m+n-1+b=19 unknowns. On the other hand we have only n-1 KCL equations and m branch voltages expressed

with nodal voltages (all in all this is only n-1+m=11 equations). We still need b=8 equations to uniquely determine

the solution. To get them we must express the branch currents with the remaining unknowns in a manner

different to the one we applied so far.

What is missing are the so-called constitutive relations of circuit elements. These relations connect branch

currents to branch voltages. We refer to these equations later as group C. Let us write down the simple ones first.

Resistors are subject to Ohm's law. This gives us 4 equations for 4 resistors.

The voltage source sets the branch voltage of the branch where it is placed. This results in another equation in

group C.

i + i + iR1 RC CC

−i + i + iR1 R2 B

−i + iRC C

−i + iE RE

= 0

= 0

= 0

= 0

uR1

uR2

uBE

uBC

uRC

uRE

uSRC

= v − v1 2

= v2

= v − v2 4

= v − v2 3

= v − v1 3

= v4

= v1

iR1

iR2

iRC

iRE

= R u1
−1

R1

= R u2
−1

R2

= R uC
−1

RC

= R uE
−1

RE

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

4 of 69 9/23/19, 11:53 AM

Finally, the transitor gives us 3 equations. We are not going to dig into transistor models so we are expressing the

colelctor and the emitter current simply as two nonlinear functions of u and u . Due to charge conservation

the base current must be equal to the difference between the emitter current and the collector current. This

yields a total of 3 addittional equations in group C.

The n-1+m+b equations from groups A, B, and C are also referred to as the circuit tableau. We can immediately

reduce the number of equations in the circuit tableau if we substitute the equations expressing branch voltages

with nodal voltages (group B) into the constitutive relations of elements (group C). This leaves us with n-1+b

equations. The set of unknowns is reduced to n-1 nodal voltages and b branch currents.

A further reduction can be achieved if we substitute the resulting constitutive relations of elements into KCL

equations (group A). This is possible if we can express the branch currents explicitly with nodal voltages. For the

example in Fig. 3 this is not possible. The problem arises because we cannot express the current flowing through

the voltage source with branch voltages. To achieve that we would need to solve the circuit tableau which we

are trying to simplify without solving it first.

If we leave the voltage sources aside for a moment and focus on circuits without voltage sources (and some

other similarly pesky elements) we can actually express branch currents explicitly with nodal voltages. Take for

instance the circuit in Fig. 4 with n=4 nodes.

Fig. 4: Nodal equations can be written for circuits where all branch currents can be explicitly expressed with

nodal voltages.

Let us first write down the n-1=3 KCL equations.

Now let us express the b=7 branch currents with nodal voltages.

u = USRC CC

BE BC

iE

iC

iB

= g (u , u)E BE BC

= g (u , u)C BE BC

= i − iE C

−i + i + i − i − i1 2 3 4 5

i + i − i4 5 7

−i + i3 6

= 0

= 0

= 0

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

5 of 69 9/23/19, 11:53 AM

Substituting these branch currents into KCL equations yields the final set of n-1=3 equations with n-1=3 unknowns

(v , v , and v).

This method of writing down circuit equations based on KCL and explicitly expressed branch currents is also

referred to as nodal analysis. The term originates from the fact that the circuit equations are basically the KCL

equations that correspond to non-reference nodes. The equations are also referred to as the nodal equations.

Solving them results in nodal voltages. Branch voltages can easily be expressed with nodal voltages. It is also

fairly easy to express branch currents. Remember we had to explicitly express them with nodal voltages before

substituting them in KCL equations.

The equations describing the circuit in Fig. 4 are linear. This is reflected in the fact that all unknowns in the

equations appear in linear terms (i.e. as additive terms with a coefficient and unknown raised to the power of 1). In

the remainder of this lecture we limit ourselves to circuits with linear equations that contain independent current

sources, linear resistors, and linear voltage-controlled current sources. Linear equations can be written in matrix

form which is more concise. For the circuit in Fig. 4 the equations in matrix form are

Rows of the coefficient matrix and the right-hand side (RHS) vector correspond to n-1=3 KCL equations for all

nodes except the reference node. Columns of the matrix and rows of the vector of unknowns correspond to n-1

unknowns (i.e. nodal voltages).

If we take a good look at this system of equations written in matrix form we can see that individual circuit

elements contribute to the matrix and the RHS according to a pattern which we are going to refer to as element

footprint.

Fig. 5: Resistor.

Let us, for instance, take a resistor with resistance R connected between nodes k and l (Fig. 5). Its element

footprint consists of 4 entries in the coefficient matrix because, generally, a resistor contributes current to two

nodes. Due to this the entries are at the crossings of the k-th and l-th row (corresponding to k-th and l-th KCL

equation) with k-th and l-th column (corresponding to nodal voltages of k-th and l-th node). Because the

coefficient matrix consists of conductances the entries will be ±R .

i1

i2

i3

i4

i5

i6

i7

= i

= R vE
−1

1

= g (v − v)11 1 3

= g u = g (v − v)21 BE 21 3 1

= g (v − v)22 2 1

= R vB
−1

3

= R vC
−1

2

1 2 3

(R + g + g + g)v − g v − (g + g)vE
−1

11 21 22 1 22 2 11 21 3

(g + g)v − (R + g)v + g v21 22 1 C
−1

22 2 21 3

−g v + (R + g)v11 1 B
−1

11 3

= i

= 0

= 0

=⎣
⎡ R + g + g + gE

−1
11 21 22

−(g + g)21 22

−g11

−g22

R + gC
−1

22

0

−(g + g)11 21

g21

R + gB
−1

11
⎦
⎤

⎣
⎡ v1

v2

v3
⎦
⎤

⎣
⎡ i

0
0 ⎦

⎤

-1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

6 of 69 9/23/19, 11:53 AM

If one of the pins of the resistor is connected to the reference node the element footprint simplifies to

Fig. 6: Independent current source.

The element footprint of an independent current source affects only the RHS vector. Suppose an independent

current source draws current I from node k and pushes it to node l (Fig. 6).

If a current source pushes current into the ground node the KCL contribution is missing. If it draws current from

the ground node the KCL contribution is missing.

Fig. 7: Voltage-controlled current source.

Finally, suppose we have an voltage controlled current source (VCCS) drawing current from node k and pushing

it to node l with controlling voltage obtained as voltage between nodes kc and lc (controlling voltage is v -v).

Let g denote its transconductance (Fig. 7). Such a controlled source contributes to the KCL equations of nodes k

and l at columns corresponding to the control voltage (i.e. columns kc and lc). Its element footprint is

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vk

⋅
⋮

+R−1

⋮
−R−1

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vl

⋅
⋮

−R−1

⋮
+R−1

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

KCL1

⋮
KCLk

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯

vk

⋅
⋮

R−1

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

RHS

⋅
⋮

−I

⋮
+I

⋮
⋅

l

k

kc lc

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

7 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

If one of the source terminals is connected to the reference node, the corresponding row (either k or l) is missing

from the footprint. If one of the nodes defining the controlling voltage is the reference node, the corresponding

column (either kc or lc) is missing from the footprint.

MMooddiififieedd nnooddaall aannaallyyssiiss

2nd Lecture

Nodal analysis has one great disadvantage. It cannot handle elements for which constitutive relations express

branch voltages with branch currents (e.g. independent voltage source). In this lecture we are going to introduce

modified nodal analysis. If we cannot explicitly express a branch current with branch voltages in some

constitutive relation we simply keep that branch current as an unknown. To make sure the system of equations is

fully determined we must add an additional equation for every branch current we decide to keep. This additional

equation is the corresponding element's constitutive relation.

Now we can handle independent voltage sources, linear controlled voltage sources, and linear current

controlled sources. Modified nodal analysis is the approach used in most circuit simulators today. With

everything we learned up to now it is fairly easy to handle arbitrary linear elements in our equations. We

demonstrate this with several examples: ideal transformer, ideal opamp with negative feedback, and inverting

amplifier built with an opamp.

The problem and its solution

In previous lecture we learned how to systematically write down the circuit equations with a small subset of all

possible unknowns. We deemed this approach nodal analysis. The main shortcoming of nodal analysis is that it

can't handle independent voltage sources, or any other elements where branch currents cannot be expressed

with branch voltages in a straightforward manner.

To sidestep this shortcoming most simulators use the following approach. Instead of trying to express the branch

current of a voltage source we simply keep the branch current as an unknown. This increases the number of

unknowns by one for every independent voltage source in the circuit. Of course, due to additional unknowns we

must also supply additional equations. These additional equations are obtained from the constitutive relations of

independent voltage sources. Suppose the voltage source with voltage U is connected with its + pin to node 1

and - pin to node 2. The additional equation is then

This approach to writing circuit equations is referred to as modified nodal analysis (MNA). Take, for instance, the

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vkc

⋅
⋮

+g

⋮
−g

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vlc

⋅
⋮

−g

⋮
+g

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

W2, October

v − v = U1 2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

8 of 69 9/23/19, 11:53 AM

circuit in Fig. 1. It has n=4 nodes and one independent voltage source. Let us apply MNA to this circuit and write

down its equations.

Fig. 1: A simple linear circuit with an independent voltage source.

Writing down the first n-1=3 equations based on KCL is straightforward. Note that we keep the current flowing

through an independent voltage source (i) as an unknown.

The additional equation based on the constitutive relation of the voltage source is

Rewriting these four equations in matrix form yields

Fig. 2: Independent voltage source.

Looking at the obtained matrix we can construct the element footprint of an independent voltage source (Fig. 2).

Let the unknowns be ordered in such manner that nodal voltages come before branch currents introduced via

MNA. Suppose the source is connected between nodes k (+) and l (-). Let i denote the unknown introduced by

MNA (i.e. the current flowing through the voltage source into its + pin). A voltage source then contributes the

following element footprint to the coefficient matrix

The element footprint of an independent voltage source contributed to the RHS vector is

CC

R v + i1
−1

1 CC

R (v − v) + R v − i2
−1

2 3 3
−1

2 CC

R (v − v) + R v2
−1

3 2 4
−1

3

= 0

= 0

= 0

v − v = U1 2 CC

=

⎣⎢
⎢⎡

R1
−1

0
0
1

0
R + R2

−1
3
−1

−R2
−1

−1

0
−R2

−1

R + R2
−1

4
−1

0

1
−1
0
0 ⎦⎥

⎥⎤
⎣⎢
⎢⎡

v1

v2

v3

iCC
⎦⎥
⎥⎤

⎣⎢
⎢⎡

0
0
0

UCC
⎦⎥
⎥⎤

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮
VSRC
⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i

⋅
⋮
1
⋮

−1
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

9 of 69 9/23/19, 11:53 AM

If one of the pins of an independent voltage source is connected to the ground the corresponding rows and

columns of the coefficient matrix and RHS vector are omitted from the footprint.

Example of a nonlinear circuit

Now let us revise the first example of the previous lecture (Fig. 3) and construct its modified nodal equations.

Fig. 3: Circuit from first lecture, revisited.

We start with KCL equations.

But this time we are going to keep i as an unknown in the system of equations. To keep the system of

equations fully determined we add one more equation - the constitutive relation of voltage source U .

Finally, we substitute the constitutive relations of resistors and the bipolar transistor ad we arrive at the following

system of equations

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮
VSRC
⋮

RHS

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

U

⋮

i + i + iR1 RC CC

−i + i + iR1 R2 B

−i + iRC C

−i + iE RE

= 0

= 0

= 0

= 0

CC

CC

v = U1 CC

R (v − v) + R (v − v) + i1
−1

1 2 C
−1

1 3 CC

−R (v − v) + R v + g (v − v , v − v) − g (v − v , v − v)1
−1

1 2 2
−1

2 E 2 4 2 3 C 2 4 2 3

−R (v − v) + g (v − v , v − v)C
−1

1 3 C 2 4 2 3

−g (v − v , v − v) + R vE 2 4 2 3 E
−1

4

v1

= 0

= 0

= 0

= 0

= UCC

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

10 of 69 9/23/19, 11:53 AM

We cannot write this system of equations in matrix form because three of the equations (second, third, and

fourth) are nonlinear - they contain nonlinear functions g and g .

Other linear controlled sources

In previous chapter we learned how to include voltage-controlled current sources in circuit equations. With MNA

we can handle other types controlled sources. Let us limit ourselves for now to linear controlled sources.

Fig. 4: Voltage-controlled voltage source.

A voltage-controlled voltage source (VCVS) connected between nodes k (+) and l (-), controlled by voltage

between nodes kc (+) and lc (-) with gain A (Fig. 4) has the following constitutive relation

Such a source contributes to KCL equations for nodes k and l. Let i denote the unknown corresponding to the

current flowing through such source (from node k to node l). The element footprint of a VCVS contributed to the

coefficient matrix is

If any of the output pins is connected to the ground the corresponding row and column (k or l) is omitted from

the footprint. Similarly if any of the controlling pins is connected to the ground the corresponding column (kc or

lc) is omitted from the footprint. VCVS does not contribute to the RHS vector.

We can also handle current-controlled sources. The controlling current must be one of the unknowns in the

system of equations (i.e. in our case a current flowing through a voltage source). If no such unknown is available

we can add one by inserting a zero-voltage independent voltage source is series with the required branch

current.

Fig. 5: Current-controlled current source.

Suppose we have a current-controlled current source (CCCS) connected between nodes k and l with gain A (Fig.

5). Let i denote the controlling current. A CCCS contributes a term of the form Ai to KCL equations for nodes k

and l. Unlike VCVS it does not add an equation to the system because it does not introduce an additional

unknown. CCCS does not contribute to the RHS vector. The element footprint of a CCCS contribution to the

coefficient matrix is

C E

v − v − A(v − v) = 0k l kc lc

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮
VCVS
⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vkc

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−A

⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vlc

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
A

⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i

⋅
⋮
1
⋮

−1
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

C

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

11 of 69 9/23/19, 11:53 AM

If a CCCS is connected with one of its pins to the ground the corresponding row (either k or l) is omitted from the

footprint.

Fig. 6: Current-controlled voltage source.

A current-controlled voltage source (CCVS) is a bit more complicated. Suppose it is connected between nodes k

(+) and l (-), is controlled by current i (which in turn must be an unknown in the system of equations), and its

transimpedance is r (Fig. 6). A CCVS introduces an additional unknown into the system because it is a voltage

source. Let i denote this unknown. The constitutive relation of a CCVS is

A CCVS does not contribute to the RHS vector. Its element footprint in the coefficient matrix is

If a CCVS is connected with one of its pins to the ground the corresponding row (either k or l) and column (either

v or v) is omitted from the footprint.

Inverting amplifier built with a real opamp

In this example we are going to write down the equations of an inverting amplifier which is obtained if we add

two resistors to an opamp (Fig. 7, left). The opamp has finite gain (A). Therefore we can model it as a linear VCVS

(Fig. 7, right).

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

iC

⋅
⋮
A

⋮
−A

⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

C

v − v − ri = 0k l C

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮
CCVS
⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

iC

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−r

⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i

⋅
⋮
1
⋮

−1
⋮
⋅
⋮
⋅
⋮

⋯
⋯
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

k l

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

12 of 69 9/23/19, 11:53 AM

Fig. 7: Inverting amplifier (left) and its model (right).

The circuit has 4 nodes and tho voltage sources. Two additional unknowns are added to the system of equations

(i and i) which comprises 3 KCL equations and the constitutive relations of the independent voltage source and

the VCVS.

After rearranging these equations we can write them in matrix form.

Ideal opamp with negative feedback

An ideal opamp with negative feedback (Fig. 8, left) is connected to three nodes. Nodes k and l represent the

non-inverting and the inverting input, while node m is its output. The current flowing into the input terminals is

zero. The output of an opamp behaves as a controlled voltage source connected between node m and ground

(Fig. 8, right).

Fig. 8: Ideal opamp with negative feedback (left) and its model (right).

The controlling voltage is the voltage between the non-inverting and the inverting input. In an indeal opamp the

gain is infinite. When such an opamp is used in a linear circuit with a negative feedback loop the opamp

produces an output voltage that forces the controlling voltage to zero because this is the only way for satisfying

the constitutive relation of the opamp without an infinite voltage at its output. Because its output is a controlled

voltage source an unknown representing its current is added to the system of equations. The constitutive relation

of an ideal opamp with negative feedback is

An ideal opamp with negative feedback does not contribute to the RHS vector. In the matrix of coefficients it

contributes to a single equation (its constitutive relation). Its element footprint in the matrix of coefficients is

A

R (v − v) + i1
−1

1 2

R (v − v) + R v (v − v)1
−1

2 1 2
−1

2 2 3

R (v − v) + i2
−1

3 2 A

v1

v3

= 0

= 0

= 0

= U

= −Av2

=

⎣⎢
⎢⎢⎢
⎡ R1

−1

−R1
−1

0
1
0

−R1
−1

R + R1
−1

2
−1

−R2
−1

0
A

0
−R2

−1

R2
−1

0
1

1
0
0
0
0

0
0
1
0
0 ⎦⎥

⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ v1

v2

v3

i

iA
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

0
0
U

0 ⎦⎥
⎥⎥⎥
⎤

v − v = 0k l

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

13 of 69 9/23/19, 11:53 AM

Ideal transformer

An ideal transformer (Fig. 9, left) has four pins where k1 and l1 represent the terminals of the primary coil and k2

and l2 represent the terminals of the secondary coil. It is obtained from a real transformer when the magnetic

coupling is ideal and inductances of the coils are infinite.

Fig. 9: Ideal transformer (left) and its model (right).

It can be described with two equations:

where n is the ratio of secondary vs. primary coil windings. We can express the first equation with nodal voltages

Based on these equations we can construct a model (Fig. 9, right) which is the basis for writing down the element

footprint of an ideal transformer. The model comprises one VCVS modelling the secondary coil and one CCCS

modelling the primary coil. Because we have a voltage source in the model an ideal transformer introduces a

new unknown in the system of equations (i). Due to this we need an additional equation in the system. We obtain

it from the first equation describing the transformer (which is actually the constitutive relation of a VCVS). The

second equation is the constitutive relation of the CCCS. An ideal transformer does not contribute to the RHS

vector. The element footprint in the coefficient matrix is

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮
OPAMP
⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

iA

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

u2

i1

= nu1

= −ni2

nv − nv − v + v = 0k1 l1 k2 l2

2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

14 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

If the primary winding is connected with one of its pins to the ground the corresponding row (either k1 or l1) and

column (either v or v) is omitted from the footprint. Similarly, if the secondary winding is connected with one of

its pins to the ground the corresponding row (either k2 or l2) and column (either v or v) is omitted from the

footprint.

SSoollvviinngg ssyysstteemmss ooff lliinneeaarr eeqquuaattiioonnss

3rd Lecture

Solving systems of linear equations is nothing new. Several approaches were developed in the past. For starters

we take a look at Gaussian elimination. We examine its computational cost and show how it can fail. To improve

the robustness of Gaussian elimination we introduce pivoting. Gaussian elimination leads to many unnecessary

operations when it is used for solving multiple systems of equations with the same coefficient matrix (which is

common in circuit simulation). To reduce the number of operations we introduce LU-decomposition followed by

backward and forward substitution.

Gaussian elimination

We are going to explain Gaussian elimination on an example. Suppose we have the following linear system

comprising three equations.

We can solve this system by using the first equation to eliminate x from the remaining equations. This yields a

new system of two equations with two unknowns. By applying the procedure recursively we end up with one

equation and one unknown. The procedure is referred to as Gaussian elimination. In our example we start it by

multiplying the first equation with -2/1 (i.e. the negative of the coefficient corresponding to x in the second

equation divided by the coefficient corresponding to x in the first equation) and adding it to the second equation.

KCL1

⋮
KCLk1

⋮
KCLl1

⋮
KCLk2

⋮
KCLl2

⋮
KCLn−1

⋮
XFORM
⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
n

⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−n

⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk2

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl2

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i2

⋅
⋮

−n

⋮
n

⋮
1
⋮

−1
⋮
⋅
⋮
⋅
⋮

⋯
⋯
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

k1 l1

k2 l2

W3, October

x + 2x + 3x1 2 3

2x + 3x − 5x1 2 3

−6x − 8x + x1 2 3

= −7

= 9

= 22

1

1

1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

15 of 69 9/23/19, 11:53 AM

This eliminates x from the second equation resulting in

Next we multiply the first equation by 6 and add it to the third equation.

At this point we eliminated x from the second and third equation. These two equations contain only two

unknowns. Now we repeat the procedure and eliminate x from the third equation by multiplying the second

equation with 4 and adding it to the third equation.

A more convenient way for representing a system of equations is to use the form of an extended matrix where

rows correspond to the equations, the first 3 columns correspond to the coefficients in front of the unknowns, and

the fourth column corresponds to the right-hand sides of the equations.

The matrix obtained after Gaussian elimination has zeros below the main diagonal and is also referred to as the

row echelon form. Suppose our system of equations has n equations. Gaussian elimination requires n(n-1)/2

divisions, (n-1)n(n+1)/3 multiplications, and (n-1)n(n+1)/3 additions. Roughly speaking the computational burden of

a Gaussian elimination grows proportionally to n .

From row echelon form we can quickly obtain the solution of the linear system by applying back-substitution.

First we solve the last equation which has only one unknown (x). This results in x =-72/25. We substitute this into

the second equation to eliminate x which leaves us with only one unknown (x).

From here we obtain x =217/25. Finally, we substitute x and x into the first equation which yields.

resulting in x =-393/25. Now we have the solution of the system of equations.

Assuming we have n equations back-substitution requires n(n-1)/2 multiplications, n(n-1)/2 subtractions, and n

divisions. The computational complexity of back-substitution grows proportionally to n .

Gaussian elimination can handle systems of several thousands of equations. Larger systems of equations can be

solved with iterative methods. Also note that large systems require a lot of memory for storing the matrix of

coefficients. Take for instance n=10000. Matrices of this size have 10 elements which (if double precision is used)

require 800MB of memory. On the other hand solving such a large system requires roughly n /3=0.33 10

multiplications. With a processor running at 3.3GHz and performing one multiplication per clock cycle the

multiplications alone require over 100 seconds of CPU time.

Numerical error and partial pivoting

Rounding errors can significantly affect the result obtained with Gaussian elimination and back-substitution. Take

1

x + 2x + 3x1 2 3

−x − 11x2 3

−6x − 8x + x1 2 3

= −7

= 23

= 22

x + 2x + 3x1 2 3

−x − 11x2 3

4x + 19x2 3

= −7

= 23

= −20

1

2

x + 2x + 3x1 2 3

−x − 11x2 3

−25x3

= −7

= 23

= 72

⎣
⎡ 1

0
0

2
−1
0

3
−11
−25

−7
23
72 ⎦

⎤

3

3 3

3 2

−x + 792/25 = 232

2 2 3

x + 434/25 − 216/25 = −71

1

2

8

3 12

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

16 of 69 9/23/19, 11:53 AM

for instance the system of equations represented by the following extended matrix

The solution of this system is x =1, x =2, and x =-3. Due to finite precision the result of every operation is rounded.

For double floating point precision this rounding takes place at the 16-th significant decimal digit. To illustrate the

problem we perform Gaussian elimination and round every obtained matrix entry to 3 significant digits. First we

eliminate nonzero entries below the first diagonal element.

Next we eliminate the nonzero entry below the second diagonal element.

From here we obtain x with the first step of back-substitution which yields x =0.00316. This is way off from what

we expected to get (-3). What went wrong? Obviously numerical error accumulated throughout Gaussian

elimination and ruined the result.

Suppose we are solving a linear system of equations

Numerical errors caused by rounding actually make us solve a perturbed system of equations. We assume the

right-hand side (bb) is not perturbed. A complete error analysis would also include the latter but the final result

would be similar to the one we state here.

The following bound can be obtained for the relative error of the solution

All norms in this equation are L norms (i.e. for vectors this is the Euclidean norm). For matrices the L norm can

be obtained as

The condition number of matrix AA is defined as

The relative error of the solution depends on the condition number of matrix AA and the matrix perturbation

caused by rounding. We cannot do anything to change the condition number of matrix AA. But we can make sure

the matrix perturbation δAA remains small.

When we are eliminating element a in k-th row by adding scaled i-th row to k-th row the scaling factor is

determined by -a /a . When the absolute value of this factor is large the added entries of scaled i-th row "drown"

the much smaller entries of k-th row in numerical noise. We can avoid this problem if we keep the absolute value

of a /a as low as possible by making sure the absolute value of a is as large as possible.

This can be achieved if we introduce row swapping. Swapping two rows is equivalent to swapping two equations.

Clearly the final result is not affected. If we swap the i-th row with the one that has the largest absolute entry in

the i-th column between elements a and a . By swapping rows we can minimize the absolute value of the

scaling factor -a /a . The entry that replaces a after we swap rows is also referred to as the pivot. The

⎣
⎡ 0.143

−1.31
11.2

0.357
0.911
−4.30

2.01
1.99

−0.605

−5.17
−5.46
4.42 ⎦

⎤

1 2 3

⎣
⎡ 0.143

0
0

0.357
4.18

−32.3

2.01
20.4
158

−5.17
−52.8

409 ⎦
⎤

⎣
⎡ 0.143

0
0

0.357
4.18

0

2.01
20.4
316

−5.17
−52.8
1.00 ⎦

⎤

3 3

Ax = b

(A + δA)(x + δx) = b

≤∥x∥
∥δx∥

1−κ(A) ∥A∥
∥δA∥

κ(A)
∥A∥
∥δA∥

2 2

∥A∥ = max ∥Ax∥∥x∥=1

κ(A) = ∥A∥∥A ∥−1

ki

ki ii

ki ii ii

ii ni

ki ii ii

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

17 of 69 9/23/19, 11:53 AM

aforementioned procedure is called partial pivoting.

Let us apply Gaussian elimination with partial pivoting to see if we do any better. Again we are going to round

obtained matrix entries to 3 significant digits. The pivot below and including a is found in the third row. Therefore

we swap the first and the third row and start Gaussian elimination on the following extended matrix

After eliminating entries below the first diagonal element we get.

Before eliminating entries below the second diagonal element we swap the second and the third row so that a

becomes the new pivot in the second column.

The next step completes the Gaussian elimination and yields

The first step of back-substitution now gives us x =-2.97 which is close to the correct value (-3) and much better

than we did when no pivoting was used.

Note that there also exists a more elaborate procedure called complete pivoting where the pivot is chosen

between matrix entries in the rectangle between a and a . In this case we not only swap rows, but also

columns. Swapping columns corresponds to swapping unknowns. Therefore the values of the unknowns

obtained after the back-substitution must be swapped in the same manner as columns were swapped during

complete pivoting to obtain the correct result.

LU decomposition

Often we need to solve multiple systems of equations with identical coefficient matrices which differ only in the

value of the RHS vector. In such cases we use matrix decomposition. A matrix can be decomposed in a product

of two matrices in many ways. A commonly used decomposition is the LU decomposition where we express

matrix A as

where L is a lower triangular matrix with all zeros above its main diagonal and U is an upper triangular matrix with

all zeros below its main diagonal. The diagonal entries of matrix L are all equal to 1. Once the LU decomposition

of a matrix is known solving a linear system is fairly cheap in computational sense. Suppose we are solving a

linear system expressed in matrix form as Ax=b. We can write

where z is a vector. To solve the linear system we first solve Lz=b. Because L is lower triangular we can apply a

procedure referred to as forward substitution which is similar to back-substitution, except that now we start by

expressing the first component of z from the first equation. We substitute this into the second equation which

gives us the second component of z. By repeating this procedure we obtain all components of z in the same

number of operations as are required for one back-substitution (i.e. the computational complexity grows

proportionally to n). In fact we don't even have to perform division because the diagonal entries of L are all equal

11

⎣
⎡ 11.2

−1.31
0.143

−4.30
0.911
0.357

−0.605
1.99
2.01

4.42
−5.46
−5.17 ⎦

⎤

⎣
⎡ 11.2

0
0

−4.30
0.408
0.412

−0.605
1.92
2.02

4.42
−4.94
−5.23 ⎦

⎤

32

⎣
⎡ 11.2

0
0

−4.30
0.412
0.408

−0.605
2.02
1.92

4.42
−5.23
−4.94 ⎦

⎤

⎣
⎡ 11.2

0
0

−4.30
0.412

0

−0.605
2.02

−0.0804

4.42
−5.23
0.239 ⎦

⎤

3

ii nn

A = LU

Ax = LUx = Lz

2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

18 of 69 9/23/19, 11:53 AM

to 1.

Because z=Ux by definition and U is upper triangular we can solve for x by applying back-substitution to Ux=z.

The computational complexity of this step also grows with n . To conclude, the computational complexity of

solving a linear system of equations when the LU decomposition is known in advance is proportional to n . This

is, of course, much cheaper than performing a Gaussian elimination.

Take for instance the following linear system Ax=b where the LU decomposition of A is

and

We start by solving Lz=b which yields

and

Finally, we solve Ux=z.

The result is

LU decomposition algorithm

The LU decomposition of a matrix can be computed as a byproduct of Gaussian elimination. The upper triangular

part of the matrix (including the diagonal entries) obtained after Gaussian elimination is the U matrix. The L matrix

is composed of ones on the main diagonal while subdiagonal entries (l) are the negatives of the factors we used

for multiplying the row containing the pivot (a) when we were eliminating element a . To demonstrate the

algorithm let us perform Gaussian elimination side by side with LU decomposition. Note that this time we are

going to work with matrix A instead of the extended matrix so there will only be n columns.

Take, for instance, the following matrix A. At this point we know little of L and U.

2

2

A = =⎣
⎡ 1

2
−6

2
3

−8

3
−5
1 ⎦

⎤

L

⎣
⎡ 1

2
−6

0
1

−4

0
0
1 ⎦

⎤

U

⎣
⎡ 1

0
0

2
−1
0

3
−11
−25 ⎦

⎤

b = ⎣
⎡ −7

9
22 ⎦

⎤

z1

z2

z3

= b = −71

= b − 2z = 232 1

= b + 6z + 4z = 723 1 2

z = ⎣
⎡ −7

23
72 ⎦

⎤

x3

x2

x1

= (−25) z = −72/25−1
3

= (−1) (z + 11x) = 217/25−1
2 3

= 1 (z − 2x − 3x) = −393/25−1
1 2 3

x = ⎣
⎡ −393/25

217/25
−72/25 ⎦

⎤

ij

ii ij

A = L = U =⎣
⎡ 1

2
−6

2
3

−8

3
−5
1 ⎦

⎤
⎣
⎡ 1

?
?

0
1
?

0
0
1 ⎦

⎤
⎣
⎡ ?

0
0

?
?
0

?
?
? ⎦

⎤

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

19 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

To eliminate the entries in the first column below the main diagonal we multiply the first row with -2/1 and add it

to the second row. This eliminates the entry in the first column of the second row. The entry in the first column of

the second row of matrix L is equal to the negative of the multiplier, i.e. 2/1. Similarly we multiply the first row

with -(-6)/1 and add it to the third row to eliminate the entry in the first column of the third row. The element of L

in the first column of the third row is therefore -6/1=-6. After we eliminate all subdiagonal entries in the first

column we can copy the diagonal element of the first row along with the ones lying to its right into matrix U.

Next, we eliminate the subdiagonal entries in the second column. There is only one such entry. We eliminate it by

multiplying the second row with -4/(-1)=4 and add the result to the third row. The corresponding element of

matrix L is therefore -4. Because at this point the elimination of subdiagonal entries in the second column is

complete we can copy the diagonal element of the resulting matrix along with all elements to its right into matrix

U.

Finally, there are no subdiagonal elements to eliminate in the last (third) column. Therefore we copy the diagonal

element from the third row into matrix U. The LU decomposition is complete.

Note how the matrix we obtained after Gaussian elimination is actually the U matrix.

In our last example we didn't use partial pivoting. In order to avoid large numerical errors partial pivoting is

necessary. When performing LU decomposition with partial pivoting we must record the row exchanges that

took place during LU decomposition. When solving for z from LU=b we use b instead of b where b is obtained

by exchanging the elements of b in the same way we exchanged rows during LU decomposition.

SSppaarrssee mmaattrriicceess,, ssoollvviinngg llaarrggee ssyysstteemmss ooff lliinneeaarr eeqquuaattiioonnss

4th Lecture

Sparse matrices are matrices where most entries are zero. Matrices of equations corresponding to real-world

circuits are sparse. This makes it possible to analyze large circuits without prohibitively large memory

requirements. But there is a catch. Performing LU-decomposition of sparse matrices must make sure that as few

as possible new nonzero entries are created during decomposition (fill-in). Unfortunately one cannot have both -

a small fill-in and small numerical error. This is because avoiding fill-in dictates the choice of matrix pivots which

now cannot be chosen in a way that would result in minimal numerical error.

Advantages

Suppose we have a large circuit with many nodes (say n=1000). Assuming that the number of voltage sources is

L = U =⎣
⎡ 1

0
0

2
−1
4

3
−11
19 ⎦

⎤
⎣
⎡ 1

2
−6

0
1
?

0
0
1 ⎦

⎤
⎣
⎡ 1

0
0

2
?
0

3
?
? ⎦

⎤

L = U =⎣
⎡ 1

0
0

2
−1
0

3
−11
−25 ⎦

⎤
⎣
⎡ 1

2
−6

0
1

−4

0
0
1 ⎦

⎤
⎣
⎡ 1

0
0

2
−1
0

3
−11

? ⎦
⎤

L = U =⎣
⎡ 1

0
0

2
−1
0

3
−11
−25 ⎦

⎤
⎣
⎡ 1

2
−6

0
1

−4

0
0
1 ⎦

⎤
⎣
⎡ 1

0
0

2
−1
0

3
−11
−25 ⎦

⎤

' ' '

W1, November

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

20 of 69 9/23/19, 11:53 AM

small the coefficient matrix has approximately n =10 elements. Storing these elements as double precision real

numbers requires requires 8 bytes for every matrix entry. Therefore just storing the matrix requires 8MB of

memory. Of course, today this is not that much of an issue. But, on the other hand, circuits with several 10000 or

even 100000 nodes are often simulated, (e.g. in integrated circuit design when a full-chip verification is

performed). Such large circuits with n=100000 would require 80GB of memory for storing the coefficient matrix.

This is even on today's scale a lot of memory.

Memory requirements grow proportionally with n . This means that doubling the number of rows quadruples the

number of elements. If we consider that according to Moore's law the number of transistors in an integrated

circuits doubles every 18 months (albeit we are not sure how long this trend is going to continue) we see that we

must wait 36 months (or 3 years) so that the memory capacity can accommodate a circuit twice as large as the

circuit which pushes the limits of matrix storage today.

But storage is not the only problem. Note how the number of operations required for solving a linear system of

equations (LU decomposition + forward substitution + back-substitution) grows proportionally with n . As n grows

we can expect to hit the barrier imposed by the computational time growing beyond anything reasonable even

sooner that we are going to run out of memory.

The question arises: can we circumvent these limitations in any way? The answer is yes. But this is possible only if

our matrices have a particular property: most of the matrix elements must be zero. Fortunately this is the case

with coefficient matrices of circuits. In almost all circuits every node is connected to a small subset of remaining

nodes (either electrically or via controlled sources). Therefore every KCL equation depends on a small subset of

all unknowns in the system of equations. Consequently most matrix entries are zero. Such matrices are also

referred to as sparse matrices. The term dense matrix is used for matrices for which all elements are considered

to be nonzero (and thus stored in computer's memory regardless of their value).

When a matrix is sparse we don't have to store all its elements. It suffices to store only the nonzero entries. This

brings along certain overhead as we must store not only the value of a nonzero matrix element, but also its

position (indices i and j). If we assume this overhead consumes 8 bytes (4 bytes per integer) we see that the break

even point for storage requirements is reached for matrices where at least half of the matrix elements are equal

to zero. Most sparse matrices that arise from real-world circuits are significantly more sparse.

Sparse matrices have an additional advantage. Performing LU decomposition on a sparse matrix can be much

cheaper if performed in a certain way. The number of operations for such an LU decomposition is proportional to

the number of nonzero matrix entries.

LU decomposition and fil l- in

When performing LU decomposition the result is often stored in the initial input matrix. The subdiagonal

elements of the resulting matrix store the subdiagonal elements of matrix L. Elements on the diagonal of the

resulting matrix and elements above it correspond to elements of matrix U. Since the diagonal elements of L are

always 1 we don't have to store them. Now let us visualize the steps of LU decomposition performed on a sparse

matrix. Let 'a', 'l', and 'u' denote nonzero entries of the coefficient matrix, L matrix, and U matrix. Zero entries are

denoted by '0'. We start with a sample sparse matrix

After the first step of Gaussian elimination we have

We denote by 'x' an intermediate result. Such intermediate results occur in columns where the row used for

2 6

2

3

⎣⎢
⎢⎡

a

a

a

a

a

a

0
0

a

0
a

0

a

0
0
a ⎦⎥

⎥⎤

⎣⎢
⎢⎡

u

l

l

l

u

x

x

x

u

x

x

x

u

x

x

x ⎦⎥
⎥⎤

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

21 of 69 9/23/19, 11:53 AM

eliminating subdiagonal elements has a nonzero element. Some intermediate results create new nonzero entries

in the matrix. Note that even if an intermediate result is zero we treat it as a nonzero element. The second step of

elimination takes care of subdiagonal elements below the second diagonal element and yields

Finally, the third step (which is the last one) results in

Note that there is no need to perform the fourth step because there are no subdiagonal elements below the

fourth diagonal element. Despite initial matrix being sparse the final result is a dense matrix which means that we

gained nothing in terms of memory consumption. It is reasonable to expect that LU decomposition will change

some zero entries in the matrix to nonzero entries. Every such additional nonzero entry is referred to as fill-in. To

keep fill-in as small as possible the pivots for Gaussian elimination must be chosen accordingly. But before we

explore pivoting in sparse LU decomposition let us first introduce a more sophisticated pivoting approach.

Complete pivoting

The pivoting described in previous lecture is also referred to as partial pivoting where for the i-th step of LU

decomposition the pivot is chosen among the i-1 subdiagonal entries.

A more sophisticated pivoting approaches chooses the pivot for the i-th step of LU decomposition in a submatrix

including all rows below the i-th diagonal entry and all columns to the right including the i-th column. This

approach is deemed complete pivoting. If the pivot is chosen outside i-th column one has to permute the

columns of the matrix. Permuting the columns corresponds to permuting the unknowns. Just like row

permutations, the column permutations must also be stored. This information is needed when we are solving the

system of equations. After the backward substitution is completed the resulting vector must be permuted in the

opposite order as we permuted the matrix columns to produce the correct vector of unknowns.

Choosing the pivot in sparse LU decomposition

Because the matrix is sparse we don't expect many pivot candidates in the column below the diagonal entry.

Due to this partial pivoting is not the best choice for sparse matrices and complete pivoting is usually applied. Let

us revisit the last example, but this time let us reverse the order of rows and columns (i.e. we permute rows and

columns). We start LU decomposition with the following matrix

The first step of LU decomposition elmininated the subdiagonal entries in the first column and yields

The second step results in

⎣⎢
⎢⎡

u

l

l

l

u

u

l

l

u

u

x

x

u

u

x

x ⎦⎥
⎥⎤

⎣⎢
⎢⎡

u

l

l

l

u

u

l

l

u

u

u

l

u

u

u

u ⎦⎥
⎥⎤

⎣⎢
⎢⎡

a

0
0
a

0
a

0
a

0
0
a

a

a

a

a

a ⎦⎥
⎥⎤

⎣⎢
⎢⎡

u

0
0
l

0
a

0
a

0
0
a

a

u

x

x

x ⎦⎥
⎥⎤

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

22 of 69 9/23/19, 11:53 AM

The last step yields the final result

This time the final result is sparse. Even better, we have no fill-in! The choice of pivot not only affects the

numerical error, but also the fill-in created during LU decomposition. Just like in LU decomposition of dense

matrices pivoting is generally performed for every LU decomposition step. To choose the optimal pivot in therms

of fill-in a simulated LU decomposition run is performed where only the fill-in is considered and no computation

takes place.

The pivot for one step of LU decomposition is selected by simulating the fill-ins of all pivot candidates in the first

step of LU decomposition. The candidate with the smallest fill-in is then chosen and the corresponding rows and

columns are exchanged. If two or more candidates produce the same fill-in the candidate with the largest

absolute value in the initial matrix is chosen. Note that due to this fill-ins cannot be chosen for pivots. The fill-ins

produced by the LU decomposition step are added to the sparse matrix. (i.e. entries for the new nonzero

elements are added with no specific value set at this point).

The proposed approach has two weak spots: fill-ins are not considered as pivot candidates, and secondly, the

magnitudes of values in the initial matrix are used for choosing pivots. LU decomposition steps can make some

fill-in large (which obviously should make it the pivot, but it cannot be chosen for pivot). The magnitude of the

chosen pivot can also be reduced by previous LU decomposition steps too much so that it no longer represents

a feasible choice for a pivot.

Note how we didn't consider the magnitudes of pivot candidates (except when a tie in terms of fill-in takes place

between two or more candidates). Consequently such a pivoting generally produces bad results in terms of

numerical error. To avoid numerical error SPICE has two parameters that reduce the set of pivot candidates.

These two parameters are relative pivot tolerance (pivrel) and absolute pivot tolerance (pivtol). The absolute

value of a pivot candidate in i-th step of LU decomposition must be greater than pivtol and greater than pivrel

times the largest subdiagonal element in the i-th column. The values of pivtol and pivrel are by default set to

10 and 10 , respectively.

What about matrix inversion?

Multiple linear systems of equations with a common coefficient matrix can also be solved by first inverting the

matrix and then multiplying every right-hand side vector with the inverted matrix. This approach has a major

disadvantage. If the matrix is sparse its inverse is usually not. The LU decomposition, however, can be sparse if

the pivots are chosen in the right way.

Direct solvers and iterative solvers.

The approach we presented (LU decomposition with forward and backward substitution) is a member of the

large family of approaches deemed as direct methods. The second large family of methods comprises iterative

methods. These methods repeatedly apply a (usually simple) algorithm to the system of equations. With each

iteration a new approximate solution is obtained which is more accurate than the previous one. After a sufficient

number of iterations the quality of the solution becomes sufficient and we can stop iterating.

⎣⎢
⎢⎡

u

l

l

l

0
u

0
l

0
0
a

a

u

u

x

x ⎦⎥
⎥⎤

⎣⎢
⎢⎡

u

l

l

l

0
u

0
l

0
0
u

l

u

u

u

u ⎦⎥
⎥⎤

-12 -3

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

23 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

NNoonnlliinneeaarr eelleemmeennttss aanndd tthhee NNeewwttoonn--RRaapphhssoonn aallggoorriitthhmm

5th Lecture

When we introduce nonlinear elements we can no longer write equations in matrix form. Instead they are now

written as a list of nonlinear equations. If the equations are twice continuously differentiable we can numerically

solve them with the Newton-Raphson algorithm. The algorithm iteratively approaches the solution by linearizing

the equations and solving the resulting linear system to produce an improved approximation to the solution of

the original nonlinear system. The stopping condition for the Newton-Raphson algorithm is presented.

We take a look at the nonlinear models of selected semiconductor elements (diode, MOSFET). The linearized

system can again be constructed by means of the element footprints approach. The Newton-Raphson algorithm

can fail to converge to a solution. Strong nonlinearities in the element characteristics can cause convergence

problems. Approaches for dealing with such elements are presented. Several approaches to finding a solution in

case of convergence problems are discussed.

Introducing nonlinear elements

Until now all circuit elements were linear which made it possible for us to write down the system of linear

equations directly from the circuit schematic using element footprints. When the elements are nonlinear their

constitutive relations become nonlinear equations. Take for instance a semiconductor diode. Its current (i) is

expressed with the voltage across its terminals (u) by the following relation

where I is the diode's saturation current and V is the thermal voltage. Assuming all constitutive relations (with

the exception of voltage sources) are in the form where device currents are expressed with branch voltages they

can be substituted in the KCL equations. For voltage sources the constitutive relations are added to the system

of nonlinear equations. The system of equations is now nonlinear and can be formulated as

where xx is the vector of unknowns an g is the i-th nonlinear function defining the i-th nonlinear equation. Often

we use a shorthand notation by introducing a vector-valued function gg which yields a vector with n components

for every argument xx.

Solving such systems of equations can be done efficiently by means of Newton-Raphson algorithm.

The Newton-Raphson algorithm for 1-dimensional problems
We illustrate the Newton-Raphson algorithm on a n=1 dimensional example. Suppose we are trying to solve

If we rewrite this equation as g(x)=0 we get

W2, November

D

D

i = I (e − 1)D S
u /VD T

S T

g (x)1

...

g (x)n

= 0

= 0

i

g(x) = 0

e = 2 − xx

g(x) = e − 2 + xx

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

24 of 69 9/23/19, 11:53 AM

The Newton-Raphson algorithm is an iterative one. With every iteration it improves the solution. Suppose we start

with initial approximate solution x . Then the algorithm computes the new approximate solution x as

where g is the derivative of g with respect to x. Suppose our initial approximate solution is x(0)=0. Then the

following sequence of approximate solutions is produced by the algorithm:

iteration 1: 0.500000000000000

iteration 2: 0.443851671995364

iteration 3: 00..44442854703829747

iteration 4: 00..444422885544401002417

iteration 5: 00..444422885544440011000022389

...

We see the algorithm converges rapidly. In only 5 iterations the result stabilizes at 12 significant digits (i.e. differs

in 13th digit between fourth and fifth iteration). The solution of the equation written with 15 significant digits is

0.442854401002389. We see the Newton-Raphson algorithm solved the equation to double precision (15 digits) in

only 5 iterations.

What makes the Newton-Raphson algorithm so efficient? Mathematically it can be shown that the algorithm

converges quadratically in the neighborhood of a solution. Quadratic convergence means that the error (i,.e. the

difference between the approximate solution x and the exact solution x) can be expressed as

for i that is large enough. Roughly speaking this means that the number of exact digits doubles with every

iteration of the algorithm. This is true if the initial approximate solution is close o the exact solution of the

problem. The algorithm can fail in several ways.

If the derivative of g becomes zero (i.e. at a stationary point) the algorithm fails due to division by zero.

The algorithm can be trapped in a cycle where the same approximate solutions are visited over and over

again.

The algorithm can fail to converge if the derivative of g is not continuous.

If the solution of the equation is a multiple root (i.e. for g(x)=(x-1) the solution x=1 has multiplicity 2) the

algorithm converges slowly in the neighborhood of the solution.

For optimal performance the function g must be twice continuously differentiable, The initial approximate

solution must be close to the exact solution, and the first derivative of g must not be equal to zero in an interval

containing the initial approximate solution x and the exact solution.

When to stop?

The Newton-Raphson algorithm improves the approximate solution with every iteration. At some point the

approximate solution becomes good enough. How do we know when to stop? Simulators usually stop the

algorithm when the following condition is satisfied

Here e and e are the relative and the absolute tolerance, respectively. The stopping criterion is based on the

assumption that when two consecutive approximate solutions are close enough to each other they are also close

enough to the exact solution. In SPICE the relative tolerance (reltol simulator parameter) is 10 . The absolute

tolerance depends on the type of the unknown. If the unknown is a voltage 10 is used (specified by the vntol

simulator parameter). For currents the absolute tolerance is 10 (specified by the abstol simulator parameter).

Generalizing the algorithm for n>1

To help us understand the algorithm for higher dimensional problems, let us find a geometric interpretation for

the Newton-Raphson formula by first rewriting it as

(i) (i+1)

x = x −(i+1) (i)
g (x)′ (i)
g(x(i)

'

(i) *

∣x − x ∣ ≤ M ∣x − x ∣(i+1) ∗ (i) ∗ 2

2

(0)

∣x − x ∣ ≤ e max(∣x ∣, ∣x ∣) + e(i+1) (i)
r

(i+1) (i)
a

r a

-3

-6

-12

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

25 of 69 9/23/19, 11:53 AM

The left-hand side is a linear function of x . In fact it is the linearization of g(x) in the neighborhood of x . The

whole equation requires this linearization to be zero. When the linearization is performed close to the exact

solution then it is almost equal to g(x) and solving the linearized equation produces a good approximation to the

exact solution.

Now what is different when we have n unkowns? We can linearize n equations by computing the derivatives of

the n left-hand sides. Let k denote the index of an unknown. One equation (g(xx)=0) is linearized as

The linearized equation defines a plane in n-dimensional space. Therefore linearizing n nonlinear equations gives

us n planes in n-dimensional space. The intersection of these n planes is the new approximate solution xx . It

can be obtained by solving the corresponding system of linear equations (obtained by linearizing the nonlinear

system of equations at the previous approximate solution). We already know how to do this (by means of

Gaussian elimination or LU decomposition, forward, and backward substitution ...).

We can write the linearized system of equations in matrix form as

where matrix GG is the Jacobian of the system at xx and is defined as

The Newton-Raphson algorithm solves the following linear system to obtain the next approximate solution xx

The stopping condition is applied to every component of xx independently. The algorithm stops when all

components satisfy the stopping condition. In SPICE OPUS the stopping condition is slightly more elaborate.

Three requirements must be met in order for the Newton-Raphson algorithm to stop.

The difference between candidate solutions from iterations i+1 and i must be within the given relative and

absolute tolerances,

The difference between candidate solutions from iterations i and i-1 must be within the given relative and

absolute tolerances, and

The last three approximate solutions must form a triangle in the n-dimensional space where the angle at

the second point is smaller than 90 .

The last two requirements prevent the algorithm from stopping when it is in fact oscillating around a solution.

Because this last check can slow down convergence users of SPICE OPUS can turn it off by setting the

noconviter simulator parameter.

Usually the initial approximate solution is a vector of all zeros. In SPICE one can override this default initial

approximate solution with the use of the .nodeset netlist directive.

In practice the algorithm has a limited number of iterations for satisfying the stopping condition. This number is

set by the itl1 parameter in SPICE (100 by default). If the algorithm fails to satisfy the stopping condition after itl1

iterations the analysis is considered as failed and an error is reported.

Element footprints revisited

Let us illustrate the construction of the linearized system of equations that are used in one iteration of the

Newton-Raphson algorithm. We start with a simple example: a semiconductor diode (Fig. 1).

g(x) + g (x)(x − x) = 0(i) ′ (i) (i+1) (i)

(i+1) (i)

g(x) + (x − x) = 0(i) ∑k=1
n

∂xk

∂g

∣
∣
∣
x=x(i) k

(i+1)
k

(i)

(i+1)

g(x) + G(x)(x − x) = 0(i) (i) (i+1) (i)

(i)

G(x) =(i)

⎣⎢
⎢⎢
⎡ ∂x1

∂g1

∂x1

∂g2

⋮

∂x1

∂gn

∂x2

∂g1

∂x2

∂g2

⋮

∂x2

∂gn

⋯
⋯
⋱
⋯

∂xn

∂g1

∂xn

∂g2

⋮

∂xn

∂gn ⎦⎥
⎥⎥
⎤

x=x(i)

(i+1)

G(x)x = G(x)x − g(x)(i) (i+1) (i) (i) (i)

o

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

26 of 69 9/23/19, 11:53 AM

Fig. 1: A semiconductor diode connected between nodes k and l.

The constitutive relation of a semiconductor diode expresses the diode current as a nonlinear function of the

diode voltage.

The diode contributes its current to the KCL equations of nodes k and l (i.e. g (xx)=0 and g (xx)=0).

The diode branch voltage can be expressed with node potentials as

To obtain the diode's contribution to the Jacobian matrix we must compute the derivative of the diode current

with respect to the node potentials. First, let us compute the derivative with respect to the diode voltage.

Here g denotes the differential conductance of the diode (not to be mistaken with nonlinear functions g and g

which correspond to the KCL equations of nodes k and l). The diode's contribution depends on two unknowns: v

and v . The derivatives of the diode current with respect to these two unknowns are

When we linearize the two nonlinear KCL equations for nodes k and l the differential conductance of the diode is

added to the Jacobian of the system into rows k and l (corresponding to the two KCL equations) and columns k

and l (corresponding to node potentials of nodes k and l). Let us assume for now there are no voltage sources in

the circuit so we don't have to apply MNA. Note that rows of the Jacobian correspond to KCL equations and

columns correspond to unknowns (node potentials). Let i denote the iteration of the Newton-Raphson algorithm.

The element footprint of a semiconductor diode in the Jacobian matrix is then

Note that g is computed from v and v . What about the right-hand side of the system of linearized

equations? A diode will contribute to the k-th and l-th row of the RHS vector. The contributions of the diode to

the k-th and l-th nonlinear equation are

For the diode's contribution in the k-th row we get

i = I (e − 1)D S
u /VD T

k l

g (x)k

g (x)l

= ⋯ + i + ⋯D

= ⋯ − i + ⋯D

u = v − vD k l

= e = g∂uD

∂iD

VT

IS u /VD T
D

D k l

k

l

=
∂vk

∂iD

∂uD

∂iD

∂vk

∂uD

=
∂vl

∂iD

∂uD

∂iD

∂vl

∂uD

= g ⋅ 1 = gD D

= g ⋅ (−1) = −gD D

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vk

⋅
⋮

+gD
(i)

⋮
−gD

(i)

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vl

⋅
⋮

−gD
(i)

⋮
+gD

(i)

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

D
(i)

k
(i)

l
(i)

[g(x)] = −[g(x)] = I (e − 1)(i)
k

(i)
l S

(v −v)/V
k

(i)
l

(i)
T

[G(x)x − g(x)] = g (v − v) − I (e − 1)(i) (i) (i)
k D

(i)
k

(i)
l

(i)
S

(v −v)/V
k

(i)
l

(i)
T

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

27 of 69 9/23/19, 11:53 AM

The first term comes from the linearized system of equations and the second one is the contribution to the

nonlinear system of equations. The contribution to row l of the RHS vector is

Now we can revisit the linear resistor connected to nodes k and l, but this time we treat it like a nonlinear

element with constitutive relation

We see that the differential conductance is R and does not depend on the current approximate solution. The

contribution to the Jacobian matrix is therefore the same as the contribution to the coefficient matrix of a linear

circuit and does not change between iterations of the Newton-Raphson algorithm. The contributions to the k-th

row of the RHS vector is

Similarly, the contribution to the l-th row of the RHS vector is also 0. This is due to the linearized contribution of a

linear resistor being identical to the "nonlinear" contribution (the two terms cancel each other out). We see that

the element footprint of a linear resistor does not change between iterations of the Newton-Raphson algorithm.

In fact linear elements contribute to the Jacobian matrix in the same way as they do to the coefficient matrix of a

linear circuit.

From the two examples we see that the Jacobian matrix of a nonlinear circuit in one iteration of the Newton-

Raphson algorithm has the same role as the coefficient matrix of a linear circuit. The major difference between

solving linear and nonlinear circuits is that the former requires solving only one linear system of equations while

the latter requires solving multiple systems of linear equations where every linear system corresponds to the

linearized circuit from one iteration of the Newton-Raphson algorithm.

Element footprint of a nonlinear element with multiple pins

We are going to illustrate the construction of an element footprint for elements with multiple pins on an

enhancement mode MOSFET with n-type channel (NMOS) operating in saturation region (Fig. 2). MOS transistors

are 4-pin elements. To keep things simple we assume the bulk pin is connected to the source pin.

Fig. 2: A NMOS transistor.

A NMOS transistor is operating in the saturation region when the following two conditions are satisfied.

Where U is the threshold voltage of the NMOS transistor. The currents flowing into the pins in the saturation

region are given by

We can express branch voltages u and u with node potentials as

[G(x)x − g(x)] = −g (v − v) + I (e − 1)(i) (i) (i)
l D

(i)
k

(i)
l

(i)
S

(v −v)/V
k

(i)
l

(i)
T

i = R u−1

-1

[G(x)x − g(x)] = R (v − v) − i = R (v − v) − R (v − v) = 0(i) (i) (i)
k

−1
k

(i)
l

(i) (i) −1
k

(i)
l

(i) −1
k

(i)
l

(i)

uGS

uDS

≥ UT

≥ u − UGS T

T

iG

iD

iS

= 0

= K(u − U) (1 + λu)GS T
2

DS

= −i − iG D

GS DS

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

28 of 69 9/23/19, 11:53 AM

To construct the element footprint in the Jacobian matrix we first compute the partial derivatives of currents with

respect to branch voltages.

Next, we express the partial derivatives of branch currents with respect to node potentials. There are 9 partial

derivatives we need to compute. These derivatives can be expressed with g and g .

Now we can construct the element footprint in the Jacobian matrix. A NMOS transistor contributes to KCL

equations of nodes k and l in columns corresponding to node potentials v , v , and v . There is no contribution to

the KCL equation of node j because i =0.

A NMOS does not contribute to the j-th row of the RHS vector due to i =0. The contribution to the k-th row is

The contribution to the l-th row of the RHS vector is

Operating point analysis and DC sweep

With the knowledge we gained up to this point we can handle circuits with arbitrary linear and nonlinear resistive

elements. The main property of resistive elements is that we can express the current flowing into the pins of the

uGS

uDS

= v − vj l

= v − vk l

=
∂uGS

∂iG

∂uDS

∂iG

∂uGS

∂iD

∂uDS

∂iD

= 0

= g = 2K(u − U)(1 + λu)21 GS T DS

= g = Kλ(u − U)22 GS T
2

21 22

= =
∂vj

∂iG

∂vk

∂iG

∂vl

∂iG

= +
∂vj

∂iD

∂uGS

∂iD

∂vj

∂uGS

∂uDS

∂iD

∂vj

∂uDS

= +
∂vk

∂iD

∂uGS

∂iD

∂vk

∂uGS

∂uDS

∂iD

∂vk

∂uDS

= +
∂vl

∂iD

∂uGS

∂iD

∂vl

∂uGS

∂uDS

∂iD

∂vl

∂uDS

= − −
∂vj

∂iS

∂vj

∂iG

∂vj

∂iD

= − −
∂vk

∂iS

∂vk

∂iG

∂vk

∂iD

= − −
∂vl

∂iS

∂vl

∂iG

∂vl

∂iD

= 0

= g ⋅ 1 + g ⋅ 0 = g21 22 21

= g ⋅ 0 + g ⋅ 1 = g21 22 22

= g ⋅ (−1) + g ⋅ (−1) = −g − g21 22 21 22

= −0 − g = −g21 21

= −0 − g = −g22 22

= −0 − (−g − g) = g + g21 22 21 22

j k l

G

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vj

⋅
⋮

g21
(i)

⋮
−g21

(i)

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vk

⋅
⋮

g22
(i)

⋮
−g22

(i)

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vl

⋅
⋮

−g − g21
(i)

22
(i)

⋮
g + g21

(i)
22
(i)

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

G

g v + g v − (g + g)v − K((v − v) − U) (1 + λ(v − v))21
(i)

j
(i)

22
(i)

k

(i)
21
(i)

22
(i)

l

(i)
j
(i)

l

(i)
T

2
k

(i)
l

(i)

−g v − g v + (g + g)v + K((v − v) − U) (1 + λ(v − v))21
(i)

j
(i)

22
(i)

k

(i)
21
(i)

22
(i)

l

(i)
j
(i)

l

(i)
T

2
k

(i)
l

(i)

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

29 of 69 9/23/19, 11:53 AM

element (voltage) as a (non)linear function of the node potentials corresponding to nodes to which the element is

connected. The function may not contain any derivatives or integrals with respect to time. The derivatives and

integrals with respect to time are required for describing reactive elements (like capacitors and inductors).

Now let us assume we describe our reactive elements by means of derivatives with respect to time. We can

always do that (i.e. convert an integral into a derivative) by choosing an appropriate independent variable in the

formulation of the element's constitutive relation. Now suppose all derivative terms are equal to zero. This is the

case when the voltages and the currents in the circuit no longer change. For stable circuits excited only by DC

voltage and current sources we reach this state if we wait for a sufficient amount of time. We refer to this state as

the circuit's operating point. For computing the circuit's operating point we need to consider only the resistive

elements in the circuit. Therefore the above described algorithm can be used for finding the operating point of

the circuit.

Often we are interested in how the operating point of a circuit changes if we change the DC value of the circuit's

excitation (voltage and current sources). Such analysis is also referred to as the DC operating point sweep or

simply DC analysis. A DC analysis is much faster than the equivalent sequence of operating point analyses

because the solution of the last sweep point is used as the initial iterate for the Newton-Raphson algorithm

solving the next sweep point. It provides a good initial guess and the Newton-Raphson algorithm requires only a

few iterations to satisfy the stopping condition. Therefore SPICE provides a separate simulator parameter (itl2) for

setting the limit on the number of Newton-Raphson iterations available for solving one point in a DC sweep. By

default its value is set to 50.

Convergence problems and how to solve them

The Newton-Raphson algorthm can exhibit convergence problems (slow convergence or even no convergence),

particularly for circuits with strong nonlinearities. Simulators use various tricks to improve convergence.

Junction voltage limiting.

p-n junctions in diodes and transistors exhibit an exponential i(u) characteristic. This can result in large currents

(and consequently large left-hand side in nonlinear KCL equations). The values can even exceed the maximum

value allowed by double floating point precision. Once that happens IEEE floating point infinite values or even

NaN (not a number) values can occur in the candidate solution. Especially NaN values spread like a "virus". Any

(binary or unary) operation performed on a NaN value results in a NaN so the NaNs quickly spread across the

whole solution vector and make the result completely useless.

To avoid this the independent variables in the exponential functions (the branch voltages across p-n junctions)

are limited to interval [-voltagelimit, voltagelimit] where voltagelimit is a simulator parameter (10 V by default). If

the branch voltage is smaller than -voltagelimit it is truncated to -voltagelimit. Similarly, if the branch voltage is

greater than voltagelimit it is truncated to voltagelimit. The obtained value is then used for computing the p-n

junction current and its derivative with respect to the node potentials. This procedure not only helps avoid infinite

and NaN values, but also speeds up the convergence of the Newton-Raphson algorithm.

Damped Newton-Raphson algorithm.

The Newton-Raphson algorithm can produce an oscillating sequence of candidate solutions. This behavior can

be eliminated to great extent if the step taken by the algorithm is shortened. To simplify the presentation of this

approach we assume a 1-dimensional problem (n=1). Let e and e denote the relative and the absolute tolerance

used in the stopping condition. Let x and x denote the previous and the new approximate solution. We define

the step tolerance as

After every Newton-Raphson iteration the stopping condition is checked. If the condition is not satisfied the step

is truncated according to the following formula

30

r a
(i) (i+1)

ϵ = e max(∣x ∣, ∣x ∣) + er
(i+1) (i)

a

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

30 of 69 9/23/19, 11:53 AM

In the next Newton-Raphson iteration the truncated solution is used as the previous solution. Parameter s is the

truncation factor specified by the sollim simulator parameter in SPICE OPUS (10 by default). The truncated

algorithm makes a slow but steady progress. Due to this slow progress it often runs out of available iterations.

Therefore the iteration limit in SPICE OPUS is increased to itl1 * sollimiter. The value of the sollimiter simulator

parameter is 10 by default.

The damped Newton-Raphson algorithm is used only when the simulator detects convergence problems. By

default the original Newton-Raphson algorithm is used.

Adding shunt resistors to the circuit.

If we connect resistors from every node to the ground we effectively add diagonal entries equal to the inverse of

the added resistance to the Jacobian. If the resistance is small enough the diagonal part begins to dominate the

Jacobian. In practice many convergence problems are reduced if resistors with sufficiently small resistance

(shunts) are added. If the resistance is not too small shunt resistors do not significantly alter the circuit's behavior.

By default shunting is turned off. It can be enabled by specifying the shunt resistance with the rshunt simulator

parameter.

Homotopy-based approaches

If we cannot solve a problem with the Newton-Raphson algorithm we try solving a much simpler problem first. In

one iteration of the homotopy-based approach we slightly modify the problem so that it becomes more similar

to the original (unsolvable) problem and apply the Newton-Raphson algorithm to this modified problem starting

with the solution obtained from the simple problem. Usually we obtain good convergence and solve the problem

successfully (because, after all, it is still a simple problem). In the next iteration we again change the problem a

bit so that it now resembles the original problem even more. We use the last obtained solution as the initial

solution and apply Newton-Raphson's algorithm again. We repeat this procedure until the modified problem

becomes identical to the original problem. The last obtained solution is therefore the solution of the original

problem.

There are many ways how one apply homotopy to difficult circuits. We describe briefly some of the approaches

used by circuit simulators.

GMIN stepping

In GMIN stepping resistors are added between every node and the ground. But contrary to shunt resistors which

are added permanently, the resistors in GMIN stepping are added only temporarily. We start by adding large

resistors and try to solve the circuit. If we fail we decrease the resistances and try again. Sooner or later the

resistors will become small enough so that their contributions will dominate the diagonal of the Jacobian and the

system will become solvable. Now homotopy comes to the rescue as we have our simple problem that we can

solve. In every iteration of GMIN stepping we increase the resistors by a certain amount (step size) and try to

solve the circuit by using the solution obtained from the previous iteration. If we fail we try again, but with a

smaller step size. After a successful iteration we increase the step size. Hopefully, after several iterations we

manage to increase the resistors to such extent that their effect becomes neglectable (i.e. they become greater

than 1/gmin). At this point we remove them and apply the Newton-Raphson algorithm for one last time (with the

last solution used as the initial approximate solution) to solve the original circuit. If this Newton-Raphson

algorithm fails the GMIN stepping is considered as failed.

In SPICE OPUS the value of gmin that is considered neglectable is specified by simulator parameters gmin (for

AC and TRAN analysis) and gmindc (for operating point and DC analysis). The default value is 10 . The number

of GMIN steps (for both decreasing and increasing the added resistances) is specified by the gminsteps simulator

parameter. When the step size in GMIN stepping becomes too small (i.e. the progress of GMIN stepping slows

down too much) the damped Newton-Raphson algorithm is used until a solution for the problematic iteration is

x =truncated
(i+1) ⎩⎨

⎧ x(i+1)

x − ϵ/s(i)

x + ϵ/s(i)

x ∈ [x − ϵ/s, x + ϵ/s](i+1) (i) (i)

x < x − ϵ/s(i+1) (i)

x > x + ϵ/s(i+1) (i)

-12

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

31 of 69 9/23/19, 11:53 AM

found.

Source stepping

In source stepping the simple problem to solve is the circuit with all independent sources turned off (i.e. set to 0).

In every iteration of source stepping we increase the values of independent sources towards their true value by a

certain step size. If the iteration is successful we increase the step size. In the opposite case we try again with a

smaller step size. Eventually the independent sources reach their true values. At that point we have the solution

of the original circuit.

In SPICE OPUS the number of source stepping iterations is limited to a value specified by the srcsteps parameter

(10 by default). If the step size becomes too small the damped Newton-Raphson algorithm is used for the

problematic iteration.

Source lifting and cmin stepping

Most circuits contain reactive elements (capacitors and inductors). These elements are ignored in operating point

and DC analysis (i.e. capacitors are removed and inductors become short circuits). On the other hand, reactive

elements provide another possibility for applying the homotopy-based approach to the problem of computing

the solution of a nonlinear circuit. If we analyze a stable circuit (including all reactive elements) in time domain

with all independent sources being slowly ramped up from zero to their actual values we can expect to reach the

DC solution of the circuit if we perform the simulation up to a sufficiently distant timepoint where all derivatives

with respect to time vanish. This approach does not work for oscillators.

Although at this point we don't understand how time-domain analysis of circuits containing reactive elements is

performed, we can still outline the main idea of source lifting. In the time-domain analysis we assume the

reactive elements initially store no energy (i.e. the initial voltages across capacitors and the initial currents flowing

through inductors are all zero). Together with all independent sources set to zero we have a circuit that is trivial to

solve. By ramping up independent sources we implicitly perform homotopy iterations as we go from timestep to

timestep in time-domain analysis.

In SPICE OPUS simulator parameter srclriseiter specifies the number of timesteps during which ramping up of

the sources is performed. If the srclrisetime simulator parameter is specified ramping up is not performed on a

timestep to timestep basis. Instead it is performed until the simulation reaches the time specified by the

srclrisetime. The srclminstep simulator parameter sets a lower bound on the timestep. srclmaxtime and

srclmaxiter specify the time and the number of timepoints when the time-domain analysis stops. If the values of

unknowns in the time-domain analysis stabilize within their respective tolerances and remain there for the

number of timepoints specified by the srclconviter simulator parameter the time-domain analysis is terminated

earlier. The solution obtained at the final timepoint is used as the initial solution approximation in the Newton-

Raphson algorithm for computing the DC solution of the circuit. If the Newton-Raphson algorithm fails to

converge the source lifting is considered as failed.

Fast changes of the unknowns can cause problems in the time-domain analysis. If source lifting fails and the

cminsteps simulator parameter is set to a value greater than zero capacitors are temporarily connected between

circuit's nodes and the ground node. The value of the capacitance is specified by the cmin simulator parameter.

Source lifting is repeated with the modified circuit. If it fails again the values of the added capacitors are

increased and the procedure is repeated. The number of repetitions is specified by the cminsteps simulator

parameter. For problematic circuits one can disable the initial source lifting without added capacitors by setting

the noinitsrcl simulator parameter.

Sometimes a circuit oscillates in time-domain analysis. This means that source lifting will most likely fail. For such

circuits source lifting can be disabled by setting the nosrclift simulator parameter.

Fine-tuning the algorithms for achieving convergence in SPICE OPUS

Assigning numbers from 1 to 3 to simulator parameters gminpriority, srcspriority, and srclpriority sets the order in

which GMIN stepping, source stepping, and source lifting are applied, respectively. For particularly troublesome

circuits one can disable the initial Newton-Raphson algorithm and go straight to the advanced algorithms by

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

32 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

setting the noopiter simulator parameter. The opdebug simulator parameter turns on the verbose mode in SPICE

OPUS. This produces a lot of messages which can help debug convergence problems.

SPICE OPUS automatically tunes the parameters of its algorithms for solving the operating point of a circuit. This

tuning can be disabled by setting the noautoconv simulator parameter.

DDCC ssmmaallll--ssiiggnnaall aannaallyyssiiss

6th Lecture

One can interpret the elements of the coefficient matrix as conductances, resistances, and controlled sources.

This interpretation results in the linearized circuit model. The linearized circuit model can be used for obtaining

small-signal properties of the circuit like gain, input impedance, and output impedance. If the signals are

composed of a large DC component and a small perturbation we can treat the circuit as linear if we consider

only the perturbations. We draw parallels between linear electronics and small-signal DC analysis.

Response to small perturbations of circuit's excitation

Suppose we are interested in how much a circuit's operating point will change if we slightly change the circuit's

excitation. The szstem of nonlinear equations describing the circut can be written as

Function ff is a vector valued function. Every component of its return value corresponds to the LHS value of one

nonlinear equation from the circuit's system of equations. Its argument (xx) is a vector whose components are the

unknowns we are trying to compute (i.e. nodal voltages and selected branch currents) that represent the solution

of the circuit's equations. Function ff can be split in two parts. One part (yy) corresponds to the contributions of the

independent sources. The sign of the compnents of yy is chosen in such manner that yy is equal to the RHS

contributions of these independent sources to the system of equations of a linear circuit. Vector yy is a constant

vector. The remaining part of ff will be denoted by gg which is a vector-valued function of xx.

The system of equations can now be written as

A small perturbation of the circuit's excitations (i.e. independent sources represented by yy) results in a small

perturbation of the circuit's solution xx. Mathematically we can formulate this as

By taking the first two terms of the Taylor series for gg and neglecting the rest we can write the system of

equations as

where GG is the Jacobian (i.e. the matrix of first derivatives) of gg. Because gg and ff differ only by a constant term it is

also equal to the Jacobian of the LHS part opf the circuit's equations (ff). The Jacobian itself depends only on the

solution of the unperturbed circuit (xx). Note that we can neglect higher order terms in the Taylor series because

W3, November

f(x) = 0

f(x) = g(x) − y

g(x) = y

g(x + Δx) = y + Δy

g(x) + G(x)Δx = y + Δy

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

33 of 69 9/23/19, 11:53 AM

we assume the perturbation is small. Because the initial circuit equation (the one without perturbations) must still

be satisfied the first LHS term and the first RHS term cancel each other out and we are left with

We obtained a linear system of equations which corresponds to some linear circuit. By solving it we can express

the perturbation of the circuit's operating point with the perturbation of the circuit's excitation. The process of

formulating this system of linear equations is also referred to as cciirrccuuiitt lliinneeaarriizzaattiioonn.

Example: perturbation analysis of a MOSFET-based amplifier

Fig. 1: A MOSFET-based amplifier (top) and the same amplifier with perturbed excitations (bottom).

For instance, take a simple circuit with an NMOS transistor depicted in Fig. 1. After solving the corresponding

system of equations we obtain the operating point of the circuit specified by v , v , v , i , and i (Fig. 1, top). The

operating point depends on the values of the two independent voltage sources U and U . Now suppose we

slightly perturb these two sources by ΔU and ΔU , respectively. This causes the operating point of the circuit

to slightly change by Δv , Δv , Δv , Δi , and Δi , respectively (Fig. 1, bottom). Let us write down the nonlinear

circuit equations and linearize them to obtain the equations for computing the perturbation of the operating

point.

The circuit has 4 nodes and 2 voltage sources. The list of unknowns includes the node potentials of nodes 1, 2,

and 3, and the currents flowing into the two independent voltage sources. We assume the MOSFET transistor is

operating in the saturation region (u ≥0 and u ≥u -U) the transistor's currents can be expressed as

The three KCL equations and the two constitutive relations of the independent voltage sources are

G(x)Δx = Δy

1 2 3 GG DD

GG DD

GG DD

1 2 3 GG DD

GS DS GS T

iG

iD

= 0

= K(u − U) (1 + λu)GS T
2

DS

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

34 of 69 9/23/19, 11:53 AM

After solving this system of equations we obtain the operating point of the circuit. After we perturb the two

independent voltage sources the operating point of the circuit changes to v +Δv , v +Δv , v +Δv , i +Δi , and

i +Δi . We can compute the perturbations of the operating point (Δv , Δv , Δv , Δi , and Δi) from the

linearized system of equations

Where g and g are expressed as (see previous lecture)

The matrix of coefficients of this linearized system of equations is in fact the circuit's Jacobian matrix computed at

the circuit's operating point. The RHS comprises the contributions of the perturbed independent voltage and

current sources.

Fig. 2: Small-signal model of the circuit in Fig. 1 for computing the operating point perturbations. The circuit was

reconstructed from the linearized system of equations.

From the obtained linear system of equations we can reconstruct a linear circuit depicted in Fig. 2. This circuit is

also referred to as the ssmmaallll--ssiiggnnaall mmooddeell ooff tthhee cciirrccuuiitt. Conductance g and transconductance g represent

the small-signal model of the NMOS transistor. If we compare it to the linearized model from the previous lecture

(used for solving a nonlinear circuit's equations by means of the NR algorithm) we can see that the small-signal

model lacks the independent curent source.

We can see that the small-signal model of a circuit is similar to the original nonlinear circuit. All linear elements

remain unchanged. The values of the independent sources are replaced with their respective perturbations.

Nodal voltages and branch currents are also replaced with their respective perturbations. Finally, nonlinear

elements are replaced with their lienarized models which are identical to those we constructed in the previous

lecture, with the exception that independent current sources are omitted in the small-signal model.

R v + iG
−1

1 GG

K(v − U) (1 + λv) + R (v − v)1 T
2

2
−1

2 3

R (v − v) + i−1
3 2 DD

v1

v3

= 0

= 0

= 0

= UGG

= UDD

1 1 2 2 3 3 GG GG

DD DD 1 2 3 GG DD

=

⎣⎢
⎢⎢⎢
⎡ RG

−1

g21

0
1
0

0
g + R22

−1

−R−1

0
0

0
R−1

R−1

0
1

1
0
0
0
0

0
0
1
0
0 ⎦⎥

⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ Δv1

Δv2

Δv3

ΔiGG

ΔiDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

0
0

ΔUGG

ΔUDD
⎦⎥
⎥⎥⎥
⎤

21 22

g =21 ∂uGS

∂iD

∣
∣
∣
∣

u =v ,u =vGS 1 DS 2

g =22 ∂uDS

∂iD

∣
∣
∣
∣

u =v ,u =vGS 1 DS 2

= 2K(v − U)(1 + λv)1 T 2

= Kλ(v − U)1 T
2

22 21

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

35 of 69 9/23/19, 11:53 AM

If an independent voltage source is not perturbed (i.e. ΔU=0) that source acts like a short circuit in the small-

signal model of a circuit. On the other hand, unperturbed independent current sources (i.e. ΔI=0) behave as open

circuits in the small-signal model of a circuit.

Small-signal models of nonlinear elements

Function g(u) is the function describing the diode characteristic. We can build small-signal models of

semiconductor devices in a manner similar to the one we used in the previou lecture. Suppose we have a

semiconductor diode with the following constitutive relation

A perturbation of the diode voltage results in a perturbation of the diode current. If the perturbation is small, we

can approximate it with the first two terms of the Taylor series expansion computed at the circuit's operating

point.

After simplification we get

where

The simple relation between Δu and Δi corresponds to a resistor (Fig. 3, bottom left). When constructing the

small-signal model of a circuit that contains a diode the diode is replaced by a resistor with conductance g

computed at the circuit's operating point. In a similar manner we can derive the small-signal models of other

semiconductor devices (Fig. 3).

Fig. 3: Small-signal models (bottom) of nonlinear elements (top) for diode (left), NMOS transistor (center), and

NPN bipolar transistor (right).

Parameters of the small-signal model of an NMOS transistor are computed at the operating point defined by U

and U as

i = I (e − 1) = g(u)D S
u /VD T

D

i + Δi = g(u + Δu) ≈ g(u) + ⋅ Δu = i + g ΔuD D D D D ∂u
∂g

∣
∣
∣
u=uD

D D D D

Δi ≈ g ΔuD D D

g = eD VT

IS u /VD T

D D

D

GS

DS

g21

g22

=
∂uGS

∂iD

∣
∣
∣
∣

u =U ,u =UGS GS DS DS

=
∂uDS

∂iD

∣
∣
∣
∣

u =U ,u =UGS GS DS DS

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

36 of 69 9/23/19, 11:53 AM

Parameters of the small-signal model of a NPN bipolar transistor are computed at operating point defined by U

and U as

The transfer function, the input impedance, and the output
impedance of a nonlinear circuit

Consider the circuit in Fig. 1. The U independent voltage source can be considered as the input signal. As its

value changes the output signal u also changes (Fig. 4). The dependence of u on U is generally nonlinear. For

the circuit in Fig. 4 this dependenci is depicted in Fig. 5 with a thin line.

Fig. 4: Input and output of a MOSFET-based amplifier.

The operating point of the circuit corresponds to the point marked with a circle in the U (U) characteristic. If we

linearize the characteristic at this point (Fig. 5) and compute the slope of the tangent line the obtained slope is

also referred to as tthhee ttrraannssffeerr ffuunnccttiioonn (A). The transfer function of a nonlinear circuit depends on the circuit's

operating point.

Fig. 5: Dependence of output voltage on the input voltage for the circuit in Fig. 4. The thick line represents the

linearization of this dependence at the circuit's operating point where the input and output voltage are u =U

and U , respectively. The slope of the tangent is also reffered to as teh transfer function at the circuit's operating

point.

BE

CE

g11

g21

g22

=
∂uBE

∂iB

∣
∣
∣
∣

u =U ,u =UBE BE CE CE

=
∂uBE

∂iC

∣
∣
∣
∣

u =U ,u =UBE BE CE CE

=
∂uCE

∂iC

∣
∣
∣
∣

u =U ,u =UBE BE CE CE

GG

2 2 GG

2 1

1 GG

2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

37 of 69 9/23/19, 11:53 AM

We can compute A numerically if we analyze the circuit's response to a small perturbation of U while U is

kept unperturbed. The slope can then be computed as the quotient A=Δu /Δu =Δv /ΔU . If we set the ΔU

perturbation to 1 (with all of the remaining independent source perturbations set to 0) the transfer function is

A=Δv /ΔU =Δv . The system of equations we need to solve is therefore

In our example the obtained value of A would be negative. The transfer function of an amplifier is also referred to

as the amplifier's gain. As the input voltage changes so does the input current i . The dependence of the input

current on the input voltage is generally nonlinear. In our particular example this dependence is linear. Fig. 6

depicts a possible dependence of a circuit's input current on the input voltage.

Fig. 6: A nonlinear dependence of input current on the input voltage. The thick line represents the linearization of

this dependence at the circuit's operating point where the input voltage is u =U . The inverse slope of the tangent

is the input impedance at the circuit's operating point. Note that the input current dependence of the circuit in

Fig. 4 is much simpler, i.e. linear.

The slope of the tangent line at the circuit's operating point is the inverse of the iinnppuutt iimmppeeddaannccee. To obtain this

slope for the circuit in Fig. 4 we simply set the input voltage perturbation ΔU to 1 (with all of the remaining

independent source perturbations set to 0) and solve the following system of equations

The slope of the tangent line is equal to Δi /Δu =-Δi /ΔU =-Δi . The input impedance is therefore

Z =-1/Δi . Note that for the circuit in Fig. 4 the input impedance can be expressed as Z =R and does not

depend on parameters g and g which are operating point dependent. Thus the slope of the tangent and the

value of the input impedance do not depend on the operating point. Consequently the dependence of i on u is

linear.

GG DD

2 1 2 GG GG

2 GG 2

= =

⎣⎢
⎢⎢⎢
⎡ RG

−1

g21

0
1
0

0
g + R22

−1

−R−1

0
0

0
R−1

R−1

0
1

1
0
0
0
0

0
0
1
0
0 ⎦⎥

⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ Δv1

Δv2

Δv3

ΔiGG

ΔiDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

0
0

ΔUGG

ΔUDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

0
0
1
0 ⎦⎥

⎥⎥⎥
⎤

1

1 1

GG

= =

⎣⎢
⎢⎢⎢
⎡ RG

−1

g21

0
1
0

0
g + R22

−1

−R−1

0
0

0
R−1

R−1

0
1

1
0
0
0
0

0
0
1
0
0 ⎦⎥

⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ Δv1

Δv2

Δv3

ΔiGG

ΔiDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

0
0

ΔUGG

ΔUDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

0
0
1
0 ⎦⎥

⎥⎥⎥
⎤

1 1 GG GG GG

in GG in G

21 22

1 1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

38 of 69 9/23/19, 11:53 AM

Fig. 7: The circuit in Fig. 4 with an independent current source injecting current at its output.

Now, consider we are interested in the circuit's response to the changes of the current injected at the circuit's

output by an independent current source I (Fig. 7). The nonlinear system of equations for computing the

operating point of the circuit in Fig. 7 is

When I =0 the circuit in Fig. 7 has the same solution (operating point) as the circuit in Fig 4 (i.e. an independent

current source with zero current behaves as an open circuit). As the injected current I changes the output

voltage u =v also changes. This dependence is depicted in Fig. 8.

Fig. 8: The nonlinear dependence of output voltage u on the injected current I at the output. The thick line

represents the linearization of this dependence at the circuit's operating point where the I =0. The slope of the

tangent is the output impedance at the circuit's operating point.

The slope of the tangent line at the circuit's operating point is the oouuttppuutt iimmppeeddaannccee. It can be computed by

setting ΔI to 1 (with all of the remaining independent source perturbations set to 0) and solving the system of

equations

The slope of the tangent line can be computed as Δu /Δi =Δv /ΔI =Δv . The output impedance is therefore

2

R v + iG
−1

1 GG

K(v − U) (1 + λv) + R (v − v)1 T
2

2
−1

2 3

R (v − v) + i−1
3 2 DD

v1

v3

= 0

= I2

= 0

= UGG

= UDD

2

2

2 2

2 2

2

2

= =

⎣⎢
⎢⎢⎢
⎡ RG

−1

g21

0
1
0

0
g + R22

−1

−R−1

0
0

0
R−1

R−1

0
1

1
0
0
0
0

0
0
1
0
0 ⎦⎥

⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ Δv1

Δv2

Δv3

ΔiGG

ΔiDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

ΔI2

0
ΔUGG

ΔUDD
⎦⎥
⎥⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎡ 0

1
0
0
0 ⎦⎥

⎥⎥⎥
⎤

2 2 2 2 2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

39 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

Z =Δv .

DC small-signal analysis in SPICE OPUS

In SPICE OPUS the DC small-signal analysis is referred to as TF analysis. One has to specify two things at its

invocation: the output signal (e.g. node potential, voltage between two nodes, or current of a voltage source) and

the independent source (voltage or current) that provides the small-signal perturbation. The analysis then

computes three things. The small-signal gain (also referred to as the transfer function) whose type depends on

the choice of the input and output. There are four possibilities: voltage gain, current gain, transconductance, and

transimpedance. The analysis also computes input impedance at the nodes of the circuit where the independent

source providing the excitation is located and the output impedance at the circuit's output. The latter is

computed correctly only if the output is a node potential or a voltage between two nodes.

Most of the time in TF analysis is spent for computing the circuit's operating point. Once it is computed the

Jacobian matrix describing the small-signal model circuit and its LU decomposition are already available. The

simulator only constructs a right-hand side vector according to the specified input excitation and performs a

forward and backward substitution to obtain the solution. From this solution the transfer function and the input

impedance are computed. For computing the output impedance the simulator constructs the appropriate right-

hand side vector and performs another forward+backward substitution. The output impedance is computed from

the obtained result.

SSmmaallll--ssiiggnnaall aannaallyyssiiss iinn tthhee ffrreeqquueennccyy ddoommaaiinn

7th Lecture

We introduce the modelling of linear reactive elements (linear capacitors, inductors, and coupled inductors). We

extend the notion of small-signal analysis to sinusoidal signals represented by complex numbers. The absolute

value of such representation corresponds to the magnitude of the sinusoidal signal while the argument

corresponds to its phase. We assume all signals in the circuit share the same frequency. Due to reactive

elements the solution of the circuit depends on this frequency.

We extend the handling of linear reactive elements to nonlinear elements. We demonstrate the modelling of

nonlinear capacitors on an example - semiconductor diode. Finally, we show how nonlinear elements are

handled in small-signal frequency-domain analysis.

Complex representation of sinusoidal signals

In circuit analysis we are often interested in the circuit's response when all excitations are sinusoidal signals of the

same frequency. Beside sinusoidal excitations we also allow DC excitations. The circuit's response to such

stimulus is composed of a transient response and a periodic signal. In stable circuits the transient response

eventually dies off and we are left with a periodic signal superimposed on a DC component. If the magnitudes of

the sinusoidal excitation signals are small the circuit's response (excluding the DC component) is sinusoidal even

if the circuit is nonlinear. We refer to the sinusoidal part of this response as small-signal sinusoidal response. The

magnitudes and phases of the response signals provide us with many valuable insights into circuit's behavior.

In unstable circuits we cannot observe the small-signal sinusoidal response because the transient response

never dies off. We can, however, compute it with a simulator. Again, the computed response can provide many

out 2

W1, December

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

40 of 69 9/23/19, 11:53 AM

valuable insights into circuit's behavior (like frequency response, stability, etc.).

Fig. 1: Three sinusoidal signals in time domain (left) and their complex representations (right).

Let us assume a sinusoidal signal with magnitude A and phase Φ.

We can express it in terms of complex numbers as

where j denotes the imaginary unit. We can see that, assuming the frequency ω is known, the signal is uniquely

defined by complex number X. The absolute value of X is equal to the magnitude of the signal while the

argument of X is equal to the phase of the signal. Fig. 1 depicts 3 sinusoidal signals and the corresponding

complex numbers as vectors in complex plane. We refer to complex numbers that represent sinusoidal signals

as complexors.

Capacitors and inductors in the frequency domain

By assuming all unknowns are sinusoidal signals of same frequency we effectively moved our analysis to the

frequency domain. Unknowns become complex numbers representing magnitudes and phases of sinusoidal

signals. Now what do we gain from this? Take for instance the constitutive relation of a linear capacitor (Fig. 2,

left).

Fig. 2: Linear capacitor (left) and inductor (right).

After applying the Fourier transformation, which moves the signals into frequency domain, this relation changes

into

where I and U are complexors representing the current and the voltage of a capacitor. Similarly, for an inductor

(Fig. 2, right) with constitutive relation

we have

x(t) = A cos(ωt + ϕ)

x(t) = A cos(ωt + ϕ) = Re Ae e = Re Xe(jϕ jω) (jω)

i = C
dt
du

I = jωCU

u = L
dt
di

U = jωLI

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

41 of 69 9/23/19, 11:53 AM

Fig. 3: Coupled inductors. When a current is flowing into the pin marked with a dot it is considered positive.

Another element to consider is the coupling between two inductors. Suppose inductors L and L are coupled

with a coupling factor |k|<1. The constitutive relations of the two inductors are extended with an additional term

representing the magnetic coupling.

where

In the frequency domain the constitutive relations become

Frequency-domain analysis of l inear circuits

Assuming all signals in the circuit are sinusoidal greatly simplifies circuit analysis. The constitutive relations of

capacitors and inductors become algebraic equations. Instead of solving a system of differential equations we

are confronted with a system of linear equations. The unknowns and the coefficients are now complex.

Capacitors and inductors are described in a manner equivalent to ordinary resistors, i.e. the current is proportional

to the voltage. The coefficient of proportionality is complex and depends on the frequency (ω). With this in mind

we can immediately derive the element footprint of a capacitor (Fig. 2, left) in the coefficient matrix.

Handling of inductors is somewhat more complicated. For a single inductor we could easily express the current

with the voltage. But for coupled inductors this would require inverting a matrix. Furthermore, expressing the

current explicitly with voltage in time-domain would require solving a system of differential equations. Therefore

most simulators choose to take a different path. Instead of explicitly expressing the device current they introduce

a new unknown for every inductor - its current. This way inductors are handled in a manner similar to voltage

sources. The constitutive relation of an inductor becomes the additional equation that makes the system fully

determined.

The element footprint of an inductor (Fig. 2, right) is

1 2

u1

u2

= L + M1
dt

di1
12

dt

di2

= M + L12
dt

di1
2

dt

di2

M = k12 L L1 2

U1

U2

= jωL I + jωM I1 1 12 2

= jωM I + jωL I12 1 2 2

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vk

⋅
⋮

+jωC

⋮
−jωC

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vl

⋅
⋮

−jωC

⋮
+jωC

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

V − V − jωLI = 0k l

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

42 of 69 9/23/19, 11:53 AM

For coupled inductors (Fig. 3) the coupling appears in the constitutive relations of the two inductors, but not in

the KCL part of the circuit equations.

The element footprint of a pair of coupled inductors is

Coupled inductors do not contribute to the right-hand side vector. We can see that the element footprint is

identical to the element footprint of the two inductors with the addition of the jωM term to both constitutive

relations.

Fig. 4: Model of non-ideal transformer. The coupling factor between the two inductors is given by k.

Let us illustrate the frequency-domain analysis of a linear circuit with an example (Fig. 4). The circuit is a model of

a non-ideal transformer with imperfect magnetic coupling k<1, winding resistance, and winding capacitance. Two

input signals are generated by the two current sources. The circuit has 5 nodes. Due to this the list of unknowns

contains 4 node potentials. Additionally, two currents are introduced into the list of unknowns by the two

inductors in the circuit. With our knowledge of element footprints we can write the system of equations by

inspection.

KCL1

⋮
KCLk

⋮
KCLl

⋮
KCLn−1

⋮
IND
⋮

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i

⋅
⋮
1
⋮

−1
⋮
⋅
⋮

−jωL

⋮

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

V − V − jωL I − jωM Ik1 l1 1 1 12 2

V − V − jωM I − jωL Ik2 l2 12 1 2 2

= 0

= 0

⋮
KCLk1

⋮
KCLl1

⋮
KCLk2

⋮
KCLl2

⋮
IND1

⋮
IND2

⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk1

⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮
⋅
⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl1

⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮
⋅
⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vk2

⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
1
⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

vl2

⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮
⋅
⋮

−1
⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i1

⋮
1
⋮

−1
⋮
⋅
⋮
⋅
⋮

−jωL1

⋮
−jωM12

⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

i1

⋮
⋅
⋮
⋅
⋮
1
⋮

−1
⋮

−jωM12

⋮
−jωL2

⋮

⋯

⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱
⋯
⋱

12

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

43 of 69 9/23/19, 11:53 AM

Nonlinear capacitors and inductors

Up to now all capacitors and inductors in this chapter were linear. Now we are going to introduce nonlinear

capacitors and inductors. The former ones model charge storage in semiconductor devices, while the latter ones

can be used for modelling coils with nonlinear cores.

Fig. 5: A linear capacitor (left), a nonlinear capacitor (center), and the linearized model of a nonlinear capacitor

(right).

A capacitor stores charge (Fig. 5, left). The plate connected to the node with the higher potential holds positive

charge (q), while the opposite plate holds equally large negative charge (-q). For linear capacitors the charge is

proportional to the voltage across the capacitor.

For nonlinear capacitors this relation is nonlinear. With respect to modelling there are two kinds of nonlinear

capacitors. The ones where the charge can be expressed as a univariate function of the voltage (voltage-

dependent capacitors) and the ones where the voltage can be expressed as a univariate function of charge

(charge-dependent capacitors). Because in most real-world cases the nonlinear function is a bijective map (and

thus its inverse exists) both approaches are feasible for most real-world nonlinear capacitors. We are going to

focus on voltage-dependent nonlinear capacitors because this approach fits well with the modified nodal

analysis. For a voltage-dependent nonlinear capacitor (Fig. 5, center) we can write

For both linear and nonlinear capacitors the charge conservation must be honored and therefore we can express

the current flowing through a capacitor as

If we assume the stored charge depends only on the voltage (but not on time itself) we can write

Here c(u) denotes the differential capacitance which is voltage-dependent. For a linear capacitor the differential

capacitance is equal to the capacitor's total capacitance (i.e. stored charge divided by the voltage). For a

nonlinear capacitor it does not make sense to define the total capacitance because the charge is not

proportional to the voltage.

Now suppose we slightly perturb the voltage of a nonlinear capacitor from U to U +Δu . How much does the

charge change?

Because the first term on the left-hand side cancels out the first term on the right-hand side we have

=

⎣⎢
⎢⎢⎢
⎢⎢
⎡ R1

−1

0
−R1

−1

0
0
0

0
R2

−1

0
−R2

−1

0
0

−R1
−1

0
R + jωC1

−1
1

0
1
0

0
−R2

−1

0
R + jωC2

−1
2

0
1

0
0
1
0

−jωL1

−jωM12

0
0
0
1

−jωM12

−jωL2
⎦⎥
⎥⎥⎥
⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎢⎢
⎡ V1

V2

V3

V4

I1

I2
⎦⎥
⎥⎥⎥
⎥⎥
⎤

⎣⎢
⎢⎢⎢
⎢⎢
⎡ IA

IB

0
0
0
0 ⎦⎥

⎥⎥⎥
⎥⎥
⎤

q = CuC C

q = q (u)C C C

i =C dt

dq (u)C C

i = = c(u)C duC

dq (u)C C

dt
duC

C dt
duC

C

C C C

q (U) + Δq = q (U) + ΔuC C C C C duC

dqC

∣
∣
∣
u =UC C

C

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

44 of 69 9/23/19, 11:53 AM

We can see that a nonlinear capacitor behaves as a linear capacitor if we consider only the small changes in

voltage and charge. Now suppose the voltage is composed of a DC component U and a small sinusoidal

component given by complexor U . Because for small perturbations the nonlinear capacitor behaves as a linear

capacitor with capacitance equal to the differential capacitance at U the small-signal model of a nonlinear

capacitor is a linear capacitor in Fig. 5 (right). A small sinusoidal voltage results in a small sinusoidal current

flowing through a nonlinear capacitor which can be expressed as

Fig. 6: A semiconductor diode (left), its operating point (center), and its linearized model (right).

An example of a nonlinear capacitor is the charge storage of a semiconductor diode (Fig. 6, left). Its operating

point (Fig. 6, center) is given by voltage U which drives a DC current I through the diode. The differential

conductance of a diode (g) depends on the operating point and was computed in one of the previous lectures.

The differential capacitance of a diode also depends on the voltage. The differential capacitance of a diode

consists of three components: depletion capacitance which is dominant for reverse polarization (U <0), diffusion

capacitance which dominates when the diode starts to conduct significant currents, and linear capacitance due

to overlap effects. The depletion capacitance can be expressed with the voltage as

where C , M, and V are diode model parameters. The diffusion capacitance, on the other hand, depends on the

resistive current flowing through the diode.

I and τ are diode model parameters, and V is the thermal voltage.

Δq = Δu = c(U)ΔuC duC

dqC

∣
∣
∣
u =UC C

C C C

C

c

C

I = jωc(U)Uc C c

D D

D

D

c =dep ⎩⎨
⎧ C 1 −0 (

VJ

UD)−M

C 1 + M0 (
VJ

UD)
U ≤ 0D

U > 0D

0 J

c = g τ = e τd D VT

IS VT

UD

S T

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

45 of 69 9/23/19, 11:53 AM

Fig. 7: Differential capacitance (full line), depletion capacitance (dotted line), and diffusion capacitance (dashed

line) of a semiconductor diode with respect to operating point voltage in linear (top) and logarithmic (bottom)

scale.

The differential capacitance of a diode (Fig. 7) is

where the last term represents the overlap capacitance (which in turn is independent of the operating point).

Nonlinear inductances can be handled in a similar manner. Two kinds of nonlinear inductors exist with respect to

the modelling approach. For current-dependent inductors the magnetic flux (Φ) can be expressed as a univariate

function of the current. For flux-dependent inductors the current can be expressed as a univariate function of the

magnetic flux. Again, in most practical cases both approaches can be applied as the mapping between flux and

current is a bijective one. Here we are going to introduce the former one, where the magnetic flux is a nonlinear

function of the current.

The voltage across an inductor can then be expressed as

Assuming the flux depends only on current, but not on time itself we can write

By introducing differential inductance l (which in turn depends on the operating point) we arrive at the small-

signal model of a nonlinear inductor which is a linear inductor with inductance equal to the differential

inductance l(I) where I is the operating point current flowing through the inductor. We leave the rest of the

derivation to the interested user, as nonlinear inductors are not common in modern integrated circuits.

Within this framework for a nonlinear inductor we can handle a linear inductor by writing

Equations of nonlinear circuits revisited

Modified nodal analysis of circuits that comprise nonlinear capacitors results in a nonlinear system of equations

of the form

Here nonlinear vector-valued function gg and vector yy represent the resistive part of the circuit and its excitations,

c = = c + c + CD uD

qD

∣
∣
∣
u =UD D

dep d ovl

ϕ = ϕ (i)L L L

u =L dt

dϕ (i)L L

u = = l(i)L diL

dϕ (i)L L

dt
diL

L dt
diL

L L

ϕ = LiL L

g(x) + q(x) = y
dt
d

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

46 of 69 9/23/19, 11:53 AM

while qq is a vector valued function expressing the total charge stored by the capacitors connected to a particular

node in the circuit. Note that every component of qq is a nonlinear function of the circuit's unknowns. In this way

the stored charge can depend on an arbitrary node potential which results in nonlinear transcapacitances where

the stored charge does not depend solely on the voltage between the capacitor's pins but also on other voltages

in the circuit.

Within the framework of this equation we can also handle nonlinear inductors for which the magnetic flux is

expressed as a function of the inductor's current. The inductor's current must be one of the circuit's unknowns.

This current appears as a term in the corresponding KCL equations. The constitutive relation of the nonlinear

inductor appears as an additional nonlinear equation in vector valued function qq.

Fig. 8: A nonlinear circuit.

Let us illustrate this by writing down the nonlinear equations of a circuit which contains nonlinear resistive and

capacitive elements in Fig. 8. The diode current consists of two components: a resistive one and a capacitive one.

The circuit has 3 nodes which result in w KCL equations. The independent volatge source and the inductor add

two more unknowns to the system of equations (i and i). With the knowledge we gather up to now the two KCL

equations can be written down by inspection.

Two more equations are obtained from the constitutive relations of the independent voltage source and inductor.

After gathering the resitive terms (terms that do not include derivatives with respect to time) and the reactive

terms (the ones that include derivatives with respect to time) in two vectors we obtain the following system of

equations.

The first term on the left-hand side corresponds to the nonlinear resistive part of the circuit (vector-valued

function gg) while the second term represents the nonlinear reactive part of the circuit (vector-valued function qq).

The right-hand side represents the circuit's excitation (vector yy). Note that the last component of qq represents the

negative of the inductor's magnetic flux because we are modelling inductors by adding new unknowns (inductor

currents) and expressing their constitutive relations in the same manner as we did with capacitors.

Small-signal frequency-domain analysis of nonlinear circuits

i = I (e − 1) + q (v)D S
v /V2 T

dt
d

D 2

1 2

R (v − v) + C(v − v) + i−1
1 2

dt

d
(1 2) 1

R (v − v) + C(v − v) + I (e − 1) + q (v) + i−1
2 1

dt

d
(2 1) S

v /V2 T

dt

d
D 2 2

= 0

= 0

v1

v − (Li)2
dt

d
2

= u (t)1

= 0

+ =

g

⎣⎢
⎢⎡

R v − R v + i−1
1

−1
2 1

−R v + R v + I (e − 1) + i−1
1

−1
2 S

v /V2 T
2

v1

v2
⎦⎥
⎥⎤

dt
d

q

⎣⎢
⎢⎡

Cv − Cv1 2

−Cv + Cv + q (v)1 2 D 2

0
−Li2

⎦⎥
⎥⎤

y

⎣⎢
⎢⎡

0
0

u (t)1

0 ⎦⎥
⎥⎤

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

47 of 69 9/23/19, 11:53 AM

Suppose the circuit's excitations are composed of a DC component and a small sinusoidal component. Therefore

we can write

Complex vector yy comprises complexors representing small sinusoidal excitations superimposed on the DC

excitations specified by vector yy . Because the sinusoidal excitations are small we can linearize the circuit and

assume its response is of the form

where the magnitudes of components in complex vector xx are small. We already know how to linearize the

resistive part of the circuit.

Matrix GG is the Jacobian of the vector valued function gg.

Now let us linearize the reactive part.

Matrix CC is the Jacobian of the vector valued function qq.

It contains the differential capacitances of reactive elements. Computing the derivative of with respect to time

eliminates the first term yielding

By taking into account both linearizations the system of equations becomes

Because gg(xx)=yy must be satisfied (i.e. xx is the circuit's operating point) we can simplify the equation to

which finally yields

For linear circuits the expression in parentheses is actually the matrix of coefficients of the circuit's linear system

of equations obtained via modified nodal analysis.

To illustrate the small signal analysis of nonlinear circuits let us write down the system of equations for circuit in

Fig. 8. First, let us obtain the equations by computing the Jacobians of the resistive and the reactive part. The

former is

g = y + Re y eDC (AC
jωt)

AC

DC

x = x + Re x eDC (AC
jωt)

AC

g x + Re x e = g(x) + G(x)Re x e) = g(x) + Re G(x)x e)(DC (AC
jωt)) DC DC (AC

jωt) DC (DC AC
jωt)

G(x) = =DC dx
dg

∣
∣
∣
x=xDC ⎣⎢

⎢⎢
⎡ ∂x1

∂g1

∂x1

∂g2

⋮

∂x1

∂gn

∂x2

∂g1

∂x2

∂g2

⋮

∂x2

∂gn

⋯
⋯
⋱
⋯

∂xn

∂g1

∂xn

∂g2

⋮

∂xn

∂gn ⎦⎥
⎥⎥
⎤

x=xDC

q x + Re x e = q(x) + C(x)Re x e)q(x) + Re C(x)x e)(DC (AC
jωt)) DC DC (AC

jωt) DC (DC AC
jωt)

C(x) = =DC dx
dq

∣
∣
∣
x=xDC ⎣⎢

⎢⎢
⎡ ∂x1

∂q1

∂x1

∂q2

⋮

∂x1

∂qn

∂x2

∂q1

∂x2

∂q2

⋮

∂x2

∂qn

⋯
⋯
⋱
⋯

∂xn

∂q1

∂xn

∂q2

⋮

∂xn

∂qn ⎦⎥
⎥⎥
⎤

x=xDC

q x + Re x e = Re jωC(x)x e)
dt
d (DC (AC

jωt)) (DC AC
jωt)

g(x) + Re G(x)x e) + Re jωC(x)x e) = y + Re y eDC (DC AC
jωt) (DC AC

jωt) DC (AC
jωt)

DC DC DC

Re G(x)x e) + Re jωC(x)x e) = Re y e(DC AC
jωt) (DC AC

jωt) (AC
jωt)

G(x) + jωC(x) x = y(DC DC) AC AC

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

48 of 69 9/23/19, 11:53 AM

Because g is the differential conductance of the diode, which is a nonlinear element, it depends on the

operating point. Let V , V , I , and I denote the operating point of the circuit. Then g can be computed as

The Jacobian of the reactive part of the circuit is

The differential capacitance of the diode depends on the operating point and can be obtained from

We assume the excitation provided by the voltage source consists of a DC component U and a small sinusoidal

signal represented by complexor U . Similarly, all signals representing the response also consist of a DC

component (i.e. the operating point of the circuit given by V , V , I , and I) and a small sinusoidal component

represented by a complexor (V , V , I , and I).

The operating point is determined by solving the nonlinear system of equations where the term representing the

reactive part of the circuit is removed. This means that in operating point analysis capacitors are removed and

inductors are replaced with short circuits.

After the operating point is obtained the differential capacitances of nonlinear elements can be computed and

matrix CC built. Note that the entries in matrix CC belonging to linear elements do not depend on the operating

point. Now we can build the system of equations for small signal analysis.

From the resulting system of equations we can see that the matrix and the right-hand side can be assembled

with the element footprint approach. Linear elements are handled in the same manner as we described in the

beginning of this lecture. The footprints of nonlinear elements can be derived from their linearized models (e.g.

see Fig. 6 (right) for the linearized model of a semiconductor diode). The right-hand side contributions of the

independent sources generating nonzero sinusoidal excitations are built in the same manner as the contributions

of those sources in operating point analysis, except that now their value is equal to the complexor that represents

the sinusoidal signal.

Small-signal frequency-domain analysis in SPICE OPUS

In SPICE the small-signal frequency-domain analysis is called AC analysis. At invocation the frequency range and

step must be specified. The magnitudes and optional phases of sinusoidal excitations are specified in the circuit

description by passing the ac parameter to independent sources. Note that the ac value is used only in small-

G(x) = =DC ∂x
∂g

∣
∣
∣
x=xDC ⎣⎢

⎢⎡
R−1

−R−1

1
0

−R−1

R + g−1
D

0
1

1
0
0
0

0
1
0
0 ⎦⎥

⎥⎤

D

1 2 1 2 D

g = = eD ∂v2

∂iD

∣
∣
∣
v =V2 2

VT

IS V /V2 T

C(x) = =DC ∂x
∂q

∣
∣
∣
x=xDC ⎣⎢

⎢⎡
C

−C

0
0

−C

C + cD

0
0

0
0
0
0

0
0
0

−L ⎦⎥
⎥⎤

c =D ∂v2

∂qD

∣
∣
∣
v =V2 2

1

1AC

1 2 1 2

1AC 2AC 1AC 2AC

=

g

⎣⎢
⎢⎡

R V − R V + I−1
1

−1
2 1

−R V + R V + I (e − 1) + I−1
1

−1
2 S

V /V2 T
2

V1

V2
⎦⎥
⎥⎤

y

⎣⎢
⎢⎡

0
0

U1

0 ⎦⎥
⎥⎤

=

⎣⎢
⎢⎡

R + jωC−1

−R − jωC−1

1
0

−R − jωC−1

R + g + jω(C + c)−1
D D

0
1

1
0
0
0

0
1
0

−jωL ⎦⎥
⎥⎤

⎣⎢
⎢⎡

V1AC

V2AC

I1AC

I2AC
⎦⎥
⎥⎤

⎣⎢
⎢⎡

0
0

U1AC

0 ⎦⎥
⎥⎤

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

49 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

signal frequency-domain analysis.

The simulator first computes the operating point of the circuit. In this computation all reactive elements are

disabled (capacitors are removed and inductors replaced with short circuits). The operating point is used for

computing the Jacobians of the resistive and the reactive part of the circuit. The approach via element footprints

is used for quickly assembling these two matrices. The right-hand side of the system of equations for small-

signal frequency-domain analysis is assembled based on the values of the ac parameter passed to the

independent sources (again with the element footprint approach). The system of equations is then solved for all

frequencies specified by the range and the step parameters at analysis invocation. The linearized models are

computed only once because the equations differ between two frequency points only by the value of ω.

AC analysis is quite fast. It requires only one LU decomposition per frequency point. For a moderate number of

frequency points a large part of the time spent by the analysis is used for computing the operating point.

SSmmaallll--ssiiggnnaall nnooiissee mmooddeelliinngg aanndd aannaallyyssiiss

8th Lecture

We briefly introduce the relevant aspects of noise modeling and analysis in linear circuits. We characterize

various types of noise appearing in electronic circuits. Noise models of selected circuit elements are presented.

We introduce small-signal noise analysis as a special case of AC analysis where signals are represented by

power spectral densities. We conclude with the computation of output and equivalent input noise contributions.

Noise as a signal

One way to classify signals is according to their energy and power. Let x(t) denote a signal. Signals with finite

energy satisfy

As time approaches positive or negative infinity such signals must approach zero. Periodic signals are not signals

with finite energy. Instead they often satisfy a less strict requirement, i.e. they have finite power.

where T denotes the period of the signal. Noise signals are generated by random processes. We are going to

focus on noise signals with finte power. First of all, noise signals are random signals. The same noise source can

generate infinitely many realizations of the same noise signal. Therefore observing the dependence of the signal

on time does not deliver much useful information. Let x(t) denote a realization of a noise signal. All realizations

have some common properties. Mathematically these properties can be formulated via the correlation function.

The correlation function of two signals x(t) and y(t) is defined as

where E[.] denotes expectation, i.e. the mean value computed across all possible realizations of the two sigfnals.

If x(t) and y(t) are generated by two stationary random processes the correlation function depends only on τ. If
the two processes are also ergodic (i.e. their statistical properties can be obtained by observing a single

realization for a sufficient amount of time) then averaging over all realizations can be replaced with averaging

over time.

W2, December

∣x(t)∣ dt < ∞∫−∞
∞ 2

∣x(t)∣ dt < ∞
T
1 ∫0

T 2

c (t, τ) = E x(t)y(t + τ)xy []

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

50 of 69 9/23/19, 11:53 AM

Noise signals we meet in practice are ergodic. If we choose y(t)=x(t) the correlation function is also referred to as

the autocorrelation function.

The Fourier transform of the autocorrelation function is also referred to as the power spectral density.

where f denotes the frequency. The integral of the power spectral density is equal to the signal's power

(Parseval's theorem).

It can be shown that the power spectral density is a nonnegative function of frequency. The autocorrelation

function is symmetric (c (-τ)=c (τ)). Therefore the power spectral density is an even function (i.e. S (-f)=S (f)) so

it is sufficient to know its values for nonnegative frequencies. With this in mind we introduce one-sided power

spectral density.

Parseval's theorem for one-sided power spectral density can be written as

We introduced one-sided power spectral density because it is used for noise characterization in circuit

simulators. It also has a physical meaning. Suppose we pass a noise signal x(t) through an ideal bandpass filter

with pass-band between f and f , and measure the RMS value of the output signal y(t). The filter eliminates all

frequencies outside the pass band. The following relation connects the measured RMS value with the power

spectral density

Common types of noise and their spectra

Thermal noise (Johnson-Nyquist noise)

This type of noise arises due to the chaotic movement of electrons in the conductor. Every resistor generates

thermal noise. It can be modelled with a current source i(t) in parallel with the resistor (Fig. 1, right). Note that the

polarity of the source is not important because the power spectral density does not change if we reverse the

current.

Fig. 1: Ideal resistor (left) and a resistor that generates thermal noise (right).

The current source produces thermal noise with the following one-sided power spectral density

where h is the Planck constant, k is the Boltzmann constant, T is the absolute temperature, and R is the

resistance of the resistor, Because at room temperature the exponent in the exponential term is small for

frequencies below 6THz we can simplify the formula to

c (τ) = lim x(t)y(t + τ)dtxy T →∞ T
1 ∫−T /2

T /2

c (τ) = lim x(t)x(t + τ)dtxx T →∞ T
1 ∫−T /2

T /2

S (f) = F c (t) = c (t)e dtxx (xx) ∫−∞
∞

xx
−j2πft

S (f)df = c (0) = lim ∣x(t)∣ dt∫−∞
∞

xx xx T →∞ T
1 ∫−T /2

T /2 2

xx xx xx xx

S (f) = 2S (f)xx
+

xx

S (f)df = c (0) = lim ∣x(t)∣ dt∫0
∞

xx
+

xx T →∞ T
1 ∫−T /2

T /2 2

1 2

RMS(y(t)) = lim y(t) dt = S (f)df2
T →∞ T

1 ∫−T /2
T /2 2 ∫

f1

f2
xx
+

S (f) =ii
+

R e −1(kT
hf)

4Rhf

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

51 of 69 9/23/19, 11:53 AM

We can see the power spectral density does not depend on the frequency across a very wide range of

frequencies. Therefore we refer to this noise as "white".

Shot noise

This type of noise occurs because the electric current consists of a flow of discrete charges (electrons). Its power

spectral density does not depend on temperature or frequency. In a diode this type of noise is modelled by a

current source in parallel with the p-n junction (Fig. 2, right, represented by current source i (t)).

Fig. 2: Ideal diode (left) and a diode with current sources representing flicker noise i and shot noise i (right).

The power spectral density of of the current source representing shot noise is

where q is the electron charge and I is the current flowing across the p-n junction. Shot noise is also "white".

Flicker noise

The power spectral density of flicker noise is inversely proportional to the frequency. This type of noise is also

referred to as 1/f noise. In a semiconductor diode flicker noise is modelled by a current source in parallel with the

p-n junction (Fig. 2, right, represented by current source i (t)). The power spectral density of the current source is

where K and A are two constants that characterize flicker noise, and I is the current flowing through the p-n

juncion. Noise signals with power spectral densities proportional to 1/f are also deemed pink noise.

Fig. 3: A current source for modelling channel thermal noise and flicker noise in a MOS transistor.

We can model noise by introducing noise sources in arbitrary semiconductor devices. Take, for instance, an MOS

transistor (Fig. 3). The channel thermal noise and flicker noise can be modelled with a single current source

connected between the drain and the source terminal. We are not going to introduce the expression for the

power spectral density of this source because it exceeds the scope of this lecture. Let us only note that the

power spectral density depends on the currents and voltages at the terminals of a MOS transistor.

Modelling the noise generated by circuit elements

All resistors and semiconductor devices are sources of noise. The noise generated by circuit elements is

modelled by current sources. For shot and flicker noise the power spectral density of the noise current source

depends on the current flowing through the device. One semiconductor element introduces several such noise

sources into the circuit. A diode, for instance, has three: shot noise and flicker noise generated by the current

flowing across the p-n junction, and thermal noise of the contact resistance. A bipolar transitor has 5 noise

sources: shot noise and flicker noise due to the device current, and thermal noise originating from the contact

resistances of the emitter, base, and the collector terminals.

S (f) =ii
+

R
4kT

s

f s

S (f) = 2qIii
+

f

S (f) =ii
+

f

K If
Af

f f

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

52 of 69 9/23/19, 11:53 AM

Small-signal transfer function

Before we proceed to computing the output noise of a circuit we must introduce the notion of small-signal

transfer function. Suppose there is an independent source in the circuit that generates a small-signal sinusoidal

excitation characterized by complexor X. Let us assume this complexor does not depend on the frequency. The

excitation results in small sinusoidal responses observed all over the circuit. Let Y denote the complexor

representing one such response observed at a selected point in the circuit. The small-signal transfer function

from the independent source to the selected point where the response is observed is defined as

Note that the transfer function depends on the frequency. It can be computed from the results of the small-

signal frquency-domain analysis (i.e. AC analysis in SPICE) by simply dividing the observed response with the

complexor representing the excitation. The unit of the transfer function depends on the type of the observed

response (voltage or current) and the type of the excitation (independent voltage or current source). If the circuit

is excited by a voltage source and the observed response is a current then the units of the transfer function are

A/V. If, on the other hand, the response is also a voltage, the transfer function is a dimensoinless quantity (since it

is a ratio of two voltages).

Noise in linear systems

Nonlinear circuits behave as linear if we consider only the small signal sinusoidal excitations and the

corresponding response. The steady-state response of a linear system excited by an independent sinusoidal

source is sinusoidal and can be represented by a complexor (Y). This complexor can be computed from the

complexor (X) representing the excitation by multiplying it with the corresponding small-signal transfer function.

where f denotes the frequency of the excitation. If the input signal is a small noise signal with power spectral

density S (f) then the output of the linear system is also a noise signal with power spectral density S (f). The

output power spectral density can be computed as

Now suppose a linear system is excited by two independent sources X and X . If we observe the response of the

system to X while X is disabled (i.e. set to zero) the response can be expressed as

where H is the transfer function from the first independent source to the output of the system. Similarly, if X is

disabled and the system is excited only by X the response is

where H is the transfer function from the second independent source to the output of the system. Now suppose

the system is excited simultaneously by both independent sources. The response of the system can then be

expressed as

This property is also referred to as superposition. With this tool in our hands we could compute the time-domain

response of a circuit excited by individual noise sources and then obtain the response of the circuit excited by all

noise sources simultaneously by adding up these partial responses. If, however, we are interested in the power

spectral density of the response we need one more piece of the puzzle.

So how do we treat noise signals that are obtained by summing two noise signals x (t) and x (t)? Things are quite

simple if the two signals are uncorrelated, i.e. the correlation function satisfies

H(f) =
X

Y (f)

Y = H(f)X

xx
+

yy
+

S (f) = ∣H(f)∣ S (f)yy
+ 2

xx
+

1 2

1 2

Y = H (f)X1 1 1

1 1

2

Y = H (f)X2 2 2

2

Y = H (f)X + H (f)X = Y + Y1 1 2 2 1 2

1 2

c (τ) = lim x (t)x (t + τ)dt = 012 T →∞ ∫−T /2
T /2

1 2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

53 of 69 9/23/19, 11:53 AM

In real-world circuits the noise sources representing various types of noise generated by a circuit element are

uncorrelated. Similarly, noise sources modelling the noise generated by two circuit elements are also

uncorrelated. Let S (f) and S (f) denote the power spectral densities of x (t) and x (t), respectively. Then the

power spectral density of y(t)=x (t)+x (t) is

Uncorrelated noise signals remain uncorrelated even after they are transformed by a linear system. If we put

together all we have learned so far: for a linear system excited by two uncorrelated noise sources with power

spectral densities S (f) and S (f) the power spectral density of the output noise can be expressed as

where H and H are transfer functions from the two noise sources to the circuit's output. This formula can be

generalized to an arbitrary number of noise sources and is the basis for small-signal noise analysis in circuit

simulators.

Small-signal noise analysis

We illustrate the small-signal noise analysis with an example. Take, for instance, the nonlinear circuit in Fig. 4. The

circuit includes the noise sources modelling the noise generated by the two resistors and the MOS transistor.

Fig. 4: A nonlinear circuit with noise sources (i , i , and i).

The first step of small-signal noise analysis is the computation of the circuit's operating point. In this computation

all noise sources are disabled (set to 0). The obtained operating point is used for computing the power spectral

density of the noise generated by the MOS transistor represented by i . Two noise sources representing the

noise generated by the two resistors (i and i) are independent of the operating point. The operating point is

also used for computing the linearized models of nonlinear elements (i.e. MOS transistor). After the linearization is

complete the frequency-domain system of equations for the linearized circuit is assembled. The coefficient

matrix (ZZ) for the circuit in Fig. 4 is

The output noise comprises contributions from all three noise sources. To compute these contributions we first

need to compute the transfer functions from every noise source to the output. For that purpose the small-signal

analysis described in the previous chapter is used. The procedure we are going to describe computes the power

spectral density of output noise at a single frequency.

11
+

22
+

1 2

1 2

S (f) = S (f) + S (f)yy
+

11
+

22
+

11
+

22
+

S (f) = ∣H (f)∣ S (f) + ∣H (f)∣ S (f)yy
+

1
2

11
+

2
2

22
+

1 2

n1 n2 n3

n3

n1 n2

Z(x) =DC

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

jωC1

−jωC1

0
0
1
0
0

−jωC1

R + R + jω(C + c + c)1
−1

2
−1

1 gd gs

g − jωc21 gd

−R1
−1

0
0
0

0
−jωcgd

g + jω(C + c)22 2 gd

−jωC2

0
0

−1

0
−R1

−1

−jωC2

R + jωC1
−1

2

0
1
1

1
0
0
0
0
0
0

0
0
0
1
0
0
0

0
0
0
1
0
0

−jω

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

54 of 69 9/23/19, 11:53 AM

To compute the transfer function from i to v we must construct the corresponding system of equations for a

circuit where the only sinusoidal excitation is comming from i . The coefficient matrix of this system does not

depend on the noise source because independent sources contribute only to the right-hand side of the system.

The only thing we need to construct is the right-hand side, which is easy, as we already know the matrix footprint

of an independent current source. If we set the complexor representing the AC current generated by i to 1 the

complexor of the response observed at v will be identical to the transfer function we want to compute. This may

seem strange because in previous chapter we were discussing how the excitations for small-signal frequency-

domain analysis must be small signals. On the other hand, small-signal analysis computes the solution of a linear

circuit. For linear circuits arbitrary magnitudes can be used for excitations. By increasing the excitation of a linear

circuit the output signal increases by the same factor. Of course, in real world circuits such large excitations don't

result is small sinusoidal perturbations of the operating point. But then again, real world circuits are not linear and

cannot handle arbitrary magnitudes of excitation. With this in mind we obtain the following system of equations

By solving for V we obtain the desired transfer function denoted by H . Similarly for the transfer function from

i to v the system of equations is

By solving for V we obtain the transfer function denoted by H . Finally, to obtain the transfer function from i

to v we must solve

By solving for V we obtain the transfer function denoted by H . Because matrix ZZ depends on the frequency

(ω) we can compute the values of all required transfer functions at a single frequency with only one LU

decomposition which is common to all transfer functions at given ω. Computing the value of a transfer function

for one ω requires only one forward and one backward substitution.

Now suppose S , S , and S denote the power spectral densities of i , i , and i at the chosen frequency for

which the transfer functions H , H , and H were computed. The power spectral density of the noise signal (S)

observed at the circuit's output (node potential v) is then

The units of the power spectral density are V /Hz if the observed output signal is a voltage. If the output signal is

a current the power spectral density is in A /Hz.

Equivalent input noise

n1 3

n1

n1

3

Z(x) =DC

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

V1AC

V2AC

V3AC

V4AC

ISRCAC

IDDAC

ILAC
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

0
1
0

−1
0
0
0 ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

3AC 1

n2 3

Z(x) =DC

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

V1AC

V2AC

V3AC

V4AC

ISRCAC

IDDAC

ILAC
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

0
−1
0
0
0
0
0 ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

3AC 2 n3

3

Z(x) =DC

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

V1AC

V2AC

V3AC

V4AC

ISRCAC

IDDAC

ILAC
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

0
0

−1
0
0
0
0 ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

3AC 3

11
+

22
+

33
+

n1 n2 n3

1 2 3 out
+

2

S = ∣H ∣ S + ∣H ∣ S + ∣H ∣ Sout
+

1
2

11
+

2
2

22
+

3
2

33
+

2

2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

55 of 69 9/23/19, 11:53 AM

Sometimes we are interested how much noise (i.e. power density spectrum) must be injected at the circuit's input

to recreate the power spectral density of the noise at the circut's output while assuming all noise sources in the

circuit are disabled. This equivalent input noise represents the aggregation of all noise sources at the circuit's

input.

To compute it, we need to define the circuit's input (i.e. the independent source that produces the input signal).

Suppose for the circuit in Fig. 4 this is u (t). First, we need to compute the transfer function from this source to

the circuit's output (let us assume this is again v) defined as V /U . We can obtain this transfer function by

setting U to 1 while disabling all other independent sources. This produces the following system of

equations (which depends on frequency ω).

After solving this system the resulting V corresponds to the transfer function which we denote by H. Because

power spectral densities are transformed by multiplying the input power spectral density with the squared

absolute value of the transfer function the power spectral density of the equivalent input noise is obtained as

The computation of H and S needs to be repeated for every frequency for which we would like to compute

the power spectral density of the equivalent input noise. If the input signal source is a voltage source the power

spectral density of the equivalent input noise is in V /Hz. If the input source is a current source the result is in

A /Hz.

Small-signal noise analysis in SPICE OPUS

When performing noise analysis one has to specify the output signal (which can be any node potential or current

appearing in the system of equations as an unknown), the input voltage source or current source (for computing

the equivalent input noise), and the frequency range (in the same manner as for AC analysis). The simulator

produces two groups of results. The first one comprises the power spectral densities of the output and

equivalent input noise along with the output noise contributions of individual noise sources. The second group of

results comprises integrals of the computed power spectral densities over the simulated frequency range.

TTiimmee--ddoommaaiinn aannaallyyssiiss

9th Lecture

To simulate the circuit in time-domain we first divide the time scale in discrete equidistant points. A nonlinear

circuit is solved at every timepoint. Reactive elements are handled by expressing the time derivatives in their

constitutive relations with approximations based on circuit solution at past timestep and the one we are currently

computing (implicit integration). Several integration algorithms are presented. The local truncation error (LTE) is

introduced and we show how it can be kept low by selecting an appropriate timestep. We replace fixed timestep

with a variable one to obtain the time-domain analysis approach used in modern circuit simualtors. Variable

timestep complicates the integration algorithm because its coefficients must be recomputed for every new

timestep. We show how this is achieved with selected numerical integration algorithms.

SRC

3 3AC SRCAC

SRCAC

Z(x) =DC

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

V1AC

V2AC

V3AC

V4AC

ISRCAC

IDDAC

ILAC
⎦⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡

−1
0
0
0
0
0
0 ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

3AC

S = S /∣H∣in
+

out
+ 2

out
+

2

2

W3, December

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

56 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS
Approximating the
time scale with
discrete steps

Suppose we want to simulate the behavior of a circuit from t=0 to t=t . Clearly, we cannot solve the circuit for all

timepoints. Therefore we divide the timescale in discrete steps. Let t denote the timepoint where the latest

solution of the circuit's equations was computed. The solution we are trying to compute corresponds to

timepoint t . Let h =t -t denote the k-th ttiimmeesstteepp between t and t (Fig. 1). In circuit simulation the timestep

is usually not constant because the dynamics of the circuit's behavior can vary greatly from time to time. When

the circuit's response changes quickly the timestep is appropriately small. When the circuit "sleeps" and nothing

interesting is happening with voltages and currents the timestep can be much greater.

Fig. 1: Discretization of the timescale in time-domain analysis. Note that the timestep (h) generally is not constant.

Numerical integration of differential equations

As we learned in previous chapters the system of equations describing the circuit's behavior in time domain can

be formulated as

where vector-valued function gg represents the resistive part of the circuit, vector-valued function qq represents

the reactive part of the circuit, vector yy represents the independent sources (excitations), and vector xx represents

the unknowns (node potentials and branch currents introduced by the modified nodal approach to circuit

equations). This is a nonlinear oorrddiinnaarryy ddiiffffeerreennttiiaall eeqquuaattiioonn ((OODDEE)). Until now we managed to avoid the

derivative term. In operating point analysis and DC small-signal analysis it simply vanished. In AC small-signal

analysis we transformed the equation to frequency domain which changed the derivative term to simple

multiplication with jω. But now we must face the music and deal with the derivative term.

The usuall approach is to approximate the derivative of a quantity with a weighted sum of its values and its

derivatives (computed at past timepoints t , t , ...). This procedure is referred to as nnuummeerriiccaall iinntteeggrraattiioonn of

ODEs. In fact, we go even one step further. In this weighted sum we also allow the value of the quantity at the

timepoint for which we are trying to solve the circuit (t). If we do the latter the numerical integration is referred

to as iimmpplliicciitt nnuummeerriiccaall iinntteeggrraattiioonn, opposite to eexxpplliicciitt nnuummeerriiccaall iinntteeggrraattiioonn where we avoid using quatities

that are not computed yet.

For the sake of simplicity we introduce the following notation. Let q̇ denote the derivative of q with respect to

time. Subscripts denote timepoint indices, i.e. q corresponds to timepoint t . A very simple implicit integration

algorithm is the bbaacckkwwaarrdd EEuulleerr aallggoorriitthhmm where the derivative is expressed with the last computed value and

the one that is about to be computed.

end

k

k+1 k k+1 k k k+1

g(x) + q(x) = y
dt
d

k k-1

k+1

k k

= (q − q)q̇k+1 hk

1
k+1 k

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

57 of 69 9/23/19, 11:53 AM

Fig. 2: Illustration of the backward Euler and the trapezoidal formula. The dashed lines represent tangents and

secants. The expressions next to the dashed lines are their respective slopes.

Another simple algorithm is the ttrraappeezzooiiddaall aallggoorriitthhmm whose origins can be traced back to finite difference

approximation of the derivative via the average of the derivative values taken at the endpoints of the interval.

From here we can express the trapezoidal formula

Fig. 2 illustrates the quantities that appear in the aforementioned integration algorithms.

Nonlinear reactive elements and their matrix footprints
If, for instance, the backward Euler formula is applied to the circuit equations we obtain the following algebraic

equation for the circuit's response at t .

In this equation qq(xx) and yy are known (the former one can be computed from the solution at the previous

timepoint and the latter one represents the values of circuit's excitations at the timepoint where we are solving

the circuit). We can rearrange the equationso by separating the known and the unknown terms.

This is a nonlinear equation which can be solved by applying the Newton-Raphson algorithm. From this equation

we can quickly deduce the matrix footprint of a linear capacitor. We start with its constitutive relation where the

charge is expressed with the voltage as q=Cu. In circuit equations the capacitor contributes a term of the form q̇.

When we are solving at timepoint t we must express q̇ with past values of the circuit's response and q

(afterall we are using implicit integration). Suppose we use the backward Euler formula which yields

Fig. 3: Linear capacitor (left) and its model used for computing the transient response at one timestep (right).

Here u is the unknown and u is the circuit's solution at the last computed timepoint. Because q̇ is the capacitor

current we can interpret the obtained equation as a parallel connection of a resistor R and independent current

source I (Fig. 3, right).

=
hk

q −qk+1 k

2
+q̇k+1 qk̇

= − + (q − q)q̇k+1 q̇k hk

2
k+1 k

k+1

g(x) + q(x) − q(x) = yk+1 hk

1 (k+1 k) k+1

k k+1

g(x) + q(x) = q(x) + yk+1 hk

1
k+1 hk

1
k k+1

k+1 k+1 k+1

= q − q = u − uq̇k+1 hk

1 (k+1 k)
hk

C
k+1 hk

C
k

k+1 k

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

58 of 69 9/23/19, 11:53 AM

From this we can conclude that the element footprint of a capacitor connected between nodes a and b for

solving the circuit at timepoint t is

Similarly, the contribution to the right-hand side (contribution of the current source) is

If the capacitor is nonlinear we skip the assumption that q=Cu. The backward Euler integration formula yields

Note that q is a nonlinear function of the capacitor voltage u . Therefore a nonlinear capacitor can be

interpreted as a nonlinear resistor whose current is equal to f(u) in parallel with an independent current source I

(Fig. 4, center). We can see that numerical integration converted a nonlinear capacitors into a nonlinear subcircuit.

Fig. 4: Nonlinear capacitor (left), its model after numerical integration (center), and the model used in one iteration

of the NR algorithm that solves the circuit at t (right).

The NR algorithm is used for solving the resulting system of nonlinear equations. In one iteration of the NR

algorithm the nonlinear resistor is linearized. Let superscripts denote the iteration of the NR algorithm and let j

denote the last solved iteration of the NR algorithm. Then the linearization of f(u) in the j+1-th iteration of the NR

algorithm is

I

R−1

= −
hk

Cuk

=
hk

C

k+1

KCL1

⋮
KCLa

⋮
KCLb

⋮
KCLn−1

v1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

va

⋅
⋮

hk

C

⋮
−

hk

C

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vb

⋅
⋮

−
hk

C

⋮

hk

C

⋮
⋅

⋯

⋯
⋱
⋯
⋱
⋯
⋱
⋯

vn−1

⋅
⋮
⋅
⋮
⋅
⋮
⋅

KCL1

⋮
KCLa

⋮
KCLb

⋮
KCLn−1

RHS

⋅
⋮

hk

Cuk

⋮
−

hk

Cuk

⋮
⋅

= q − qq̇k+1 hk

1
k+1 hk

1
k

k+1 k+1

k+1

I

f(u)k+1

= −
hk

q(u)k

=
hk

q(u)k+1

k+1

k+1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

59 of 69 9/23/19, 11:53 AM

Because the derivative of charge (q) with respect to voltage (u) is the differential capacitance c(u), we can write

This corresponds to an independent current source I in parallel with a linear resistor R (Fig 4, right) where

For a linear capacitor we have c(u)=C and q(u)=Cu which implies I =0.

Now suppose we use the trapezoidal integration formula. The current flowing into a linear capacitor (q̇) is now

expressed as

When the trapezoidal algorithm is used the circuit equivalent of a linear capacitor in one iteration of the Newton-

Raphson algorithm is the same as the circuit in Fig. 3 (right). The only difference is, that the value of the

independent current source and the resistance of the resistor are is R=h /(2C) and the current generated by the

current source is I=-(2Cv /h +q̇).

One migh ask at this point: where do we get q̇ from? Fortunately the derivative is computed by the integration

formula at every past timestep for which the circuit's equations were solved. We just need to store it for later use.

This leaves us in a bit of a dilemma - what to do when we are solving the circuit's equations at the first timepoint?

For the first timepoint we resort to integration formulae which do not require the knowledge of the derivative at

past timepoints (e.g. Backward Euler formula). We can switch to using a more advanced integration formula (like

trapezoidal integration) at the second timepoint.

If the capacitor is nonlinear, the trapezoidal integration formula results in

This again corresponds to the model circuit Fig. 4 (center) with the following values for its elements

After linearization is applied we arrive at the model cirucit in Fig 4 (right) which is used at t for computing the

j+1-th iteration of the NR agorithm. The elements of the model circuit are

f(u)k+1
(j+1) = f(u) + (u − u)k+1

(j)

∂u

∂f

∣
∣
∣
u=u

k+1
(j) k+1

(j+1)
k+1
(j)

= q(u) + (u − u)
hk

1
k+1
(j)

hk

1
∂u

∂q

∣
∣
∣
u=u

k+1
(j) k+1

(j+1)
k+1
(j)

= u + q(u) − u
hk

1
∂u

∂q

∣
∣
∣
u=u

k+1
(j) k+1

(j+1)

hk

1
k+1
(j)

hk

1
∂u

∂f

∣
∣
∣
u=u

k+1
(j) k+1

(j)

f(u)k+1
(j+1) = u + − u

hk

c(u)k+1
(j)

k+1
(j+1)

hk

q(u)k+1
(j)

hk

c(u)k+1
(j)

k+1
(j)

NR

INR

R−1

= − u
hk

q(u)k+1
(j)

hk

c(u)k+1
(j)

k+1
(j)

=
hk

c(u)k+1
(j)

NR

= − + q − q = u − u −q̇k+1 q̇k hk

2 (k+1 k)
hk

2C
k+1 hk

2C
k q̇k

k

k k k

I

R−1

= − u +(
hk

2C
k q̇k)

=
hk

2C

k

= q − − qq̇k+1 hk

2
k+1 q̇k hk

2
k

I

f(u)k+1

= − +(q̇k
hk

2q(u)k)
=

hk

2q(u)k+1

k+1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

60 of 69 9/23/19, 11:53 AM

Again, we can see that I vanishes for linear capacitors.

Generalized approach to numerical integration formulae

There exist many integration formulae. In numerical mathematics their purpose is to express the value of a

quantity q at timepoint t with the values of the quantity at past timepoints and values of its first derivative q̇ at

past timepoints and t (the latter timepoint is used only in implicit formulae). The following ansatz can be used

for expressing an arbitrary integration formula.

Suppose q is a function of time. For most functions an integration formula provides an approximation of q .

approximate in the sense that q is only approximately equal to the right-hand side of the ansatz. An exception

to this are polynomials of an order not exceeding n. An integration formula has order n if it is exact for

polynomials of order up to and including n. By assuming q(t) is a polynomial of time of the form αt we can derive

coefficients a and b .

Derivation of the backward Euler formula

Suppose we want do derive an implicit integration formula of order n=1 (backward Euler formula). Because a first-

order polynomial has only two coefficients the integration formula can have only two nonzero coefficients.

Because we chose to construct an implicit formula, b will be nonzero. As the second nonzero coefficient we

choose a . The ansatz for the integration formula is therefore

For a polynomial q(t)=α we have

Substituting this in our ansatz yields the first equation for computing the coefficients b and a .

For a polynomial q(t)=αt we can write

By substituting this in the ansatz we get the second equation for computing coefficients a and a .

Equations can be simplified if we assume t =0 which implies t =h . The system of equations is now

This system is already solved. The obtained numerical integration formula is therefore

By expressing q̇ we get the backward Euler formula we introduced earlier.

INR

R−1

= − u
hk

2q(u)k+1
(j)

hk

2c(u)k+1
(j)

k+1
(j)

=
hk

2c(u)k+1
(j)

NR

k+1

k+1

q = a q + h bk+1 ∑i=0
p

i k−i k ∑i=−1
r

iq̇k−i

q+1

k+1

j

i i

-1

0

q = a q + h bk+1 0 k k −1q̇k+1

q = q(t)k−i k−i

= (t)q̇k−i q̇ k−i

= α

= 0

-1 0

α = a α + h b ⋅ 00 k −1

q = q(t)k−i k−i

= (t)q̇k−i q̇ k−i

= αtk−i

= α

-1 0

αt = a αt + h b αk+1 0 k k −1

k k+1 k

a0

b−1

= 1

= 1

q = q + hk+1 k kq̇k+1

k+1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

61 of 69 9/23/19, 11:53 AM

Derivation of the trapezoidal formula

TTrraappeezzooiiddaall ffoorrmmuullaa is a second order implicit formula (n=2). We obtain it if we assume the nonzero coefficients

are a , a , and b . The ansatz for the formula is

By substituting q(t)=α and q(t)=αt in the ansatz we get the first two equations for computing the coefficients.

The third equation is obtained by substituting q(t)=αt in the ansatz. For this purpose we first compute

By substituting this in the ansatz we obtain the third equation.

Again, we assume t =0 and t =h which greatly simplifies the equations and yields the following linear system.

Solving the system yields a =1, b =1/2, and b =1/2. After substituting these values in the ansatz we get

from where the trapezoidal formula follows after solving for q̇ .

Adams-Moulton integration formulae

An Adams-Moulton integration formula of order n is obtained if we choose b , ..., b , and a to be the nonzero

coefficients in the general integration formula ansatz. The backward Euler formula is in fact the Adams-Moulton

formula of order n=1. The trapezoidal formula is the Adams-Moulton formula of order n=2.

Gear integration formulae

These formulae are also referred to as bbaaccwwaarrdd ddiiffffeerreennttiiaattiioonn ffoorrmmuullaaee ((BBDDFF)). The BDF formula of order n is

obtained if a , ..., a and b are choosen as the nonzero coefficients in the general integration formula ansatz.

The BDF formula of order n=1 is in fact the backward Euler formula.

Single-step vs. multistep

If the integration formula involves only values at t and t then it is a single-step formula. Such a formula

depends only on the last step length (h). The backward Euler formula and the trapezoidal formula are single

step integration formulae. Because their coefficients depend only on h , they can be computed in advance.

Multistep formulae involve values at more that the previously mentioned two timepoints. If the step is constant

(i.e. h =h =h =...) their coefficients can be computed in advance. Unfortunately in circuit simulators the step

varies with the circuit's dynamics. Therefore the coefficients of multistep methods must be recomputed at every

timestep. For a formula of order n this involves solving a linear system of n+1 equations (i.e. like we did for the

= q − qq̇k+1 hk

1 (k+1 k)

0 1 -1

q = a q + h b + h bk+1 0 k k 0q̇k k −1q̇k+1

α = a α + h b ⋅ 0 + h b ⋅ 00 k 0 k −1

αt = a αt + h b α + h b αk+1 0 k k 0 k −1

2

q = q(t)k−i k−i

= (t)q̇k−i q̇ k−i

= αtk−i
2

= 2αtk−i

αt = a αt + h b 2αt + h b 2αtk+1
2

0 k
2

k 0 k k −1 k+1

k k+1 k

a0

b + b0 −1

2b−1

= 1

= 1

= 1

0 0 -1

q = q + +k+1 k 2
hk q̇k 2

hk q̇k+1

k+1

= − + q − qq̇k+1 q̇k hk

2 (k+1 k)

-1 n-1 0

0 n-1 -1

k k+1

k

k

k k-1 k-2

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

62 of 69 9/23/19, 11:53 AM

backward Euler and the trapezoidal formula).

How simulators apply numerical integration

A quantity (i.e. capacitor charge, inductor flux) must be numerically integrated to get rid of its derivative with

respect to time and replace it with a weighted sum of past values of the quantity and its derivative. As we already

know, the value of the quantity that is about to be computed (at t) also takes part in this weighted sum if

implicit numerical integration formulae are used. For this purpose the simulator stores past values of the quantity

and its derivative with respect to time. The length of this storage depends on the type and maximal order of the

integration algorithm used by the simulator.

If a multistep algorithm is used the simulator recomputes the integration formula coefficients before the Newton-

Raphson algorithm starts solving the circuit for one timepoint. Because the last timestep (h) is part of the

integration formula ansatz the coefficients don't need to be recomputed if the simulator decides to abandon a

solution at a particular timepoint, reduce the timestep, and repeat the Newton-Raphson algorithm for this shorter

timestep (this happens when the obtained solution is not accurate enough; we will discuss this issue later when

we introduce local truncation error).

What about explicit integration?

There also exist various explicit integration algorithms. For instance, if we select the nonzero coefficients to be b ,

..., b and a we obtain the AAddaammss--BBaasshhffoorrtthh iinntteeggrraattiioonn ffoorrmmuullaa ooff oorrddeerr nn. The forward Euler formula is in

fact the Adams-Bashforth formula of order n=1.

Explicit integration methods tend to produce unstable results (the circuit response explodes) if the timestep (h)

is greater than the time constant of the circuit's response. Consequently the timestep must be kept small, even

when the circuit's response does not change much. This is particularly problematic in "stiff" circuits with multiple

time constants, of which one is small and one is large. Such circuits can be analyzed with explicit integration only

when the timestep is smaller than the shortest time constant of the circuit. To see any meaningfull results we

must simulate the circuit for a multiple of the longest time constant. This means that a large number of timesteps

must be taken. Because every step contributes some numerical error (we will later name it local truncation error)

and the errors accumulate the error at the final timepoint can become greater than the response itself which

makes the obtained result useless.

As a side note, let us mention that if we choose a , ..., a to be the nonzero coefficients we obtain an nn--tthh oorrddeerr

ppoollyynnoommiiaall eexxttrraappoollaattiioonn ffoorrmmuullaa for computing the value of q at t . The obtained formula is equivalent to

constructing an n-th order polynomial interpolation that matches the quantity at timepoints t , ..., t and

computing its value at t .

Local truncation error

In the process of deriving an integration algorithm formula of n-th order we assumed that the response (q(t)) is a

polynomial of order not exceeding n). Now suppose the response is a polynomial of order exceeding n. As any

sufficiently smooth function can be expressed in the form of a Taylor series (i.e. as a polynomial of infinite order)

we can expect that the result produced by the integration algorithm will differ from the actual response q(t). Even

if the values of q and q̇ are known exactly at past timepoints t , t , ..., we can expect that the value computed by

the integration algorithm at t will differ from q(t). This difference is referred to as the llooccaall ttrruunnccaattiioonn eerrrroorr

((LLTTEE)) (see Fig. 5). LTE is expressed in terms of q (i.e. for capacitors this is the stored charge and for inductors the

stored magnetic flux).

k+1

k

0

n-1 0

q = q + hk+1 k kq̇k

k

0 n

k+1

k-n 0

k+1

k k-1

k+1 k+1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

63 of 69 9/23/19, 11:53 AM

Fig. 5: Local truncation error ε is the difference between the value of a quantity at t computed via numerical

integration and its actual value under the assumption that the quantity and its derivative are known exactly for all

earlier timepoints t≤t .

Suppose the exact values of q are given by a Taylor series in the neighbourhood of t

where q denotes the j-th derivative of q with respect to time. The first derivative of the exact response is

The integration algorithm computes an approximation of q(t) denoted by q . We substitute q(t) and q̇(t) for

q and q̇ in the integration algorithm ansatz to obtain the approximate value of q(t).

We separate the term corresponding to j=0.

and express the sum over j as a series comprising terms with powers of h .

On the other hand, the exact value of the response at t can be expressed with the Taylor series

The LTE is defined as the difference betweeen q and q(t). Due to the way we expressed these two terms LTE

can be expressed as a series comprising terms with powers of h .

By comparing the last three expressions we get

When we were deriving the equations for computing coefficients a and b we required q =q(t) for q(t) that was

k+1 k+1

k

k

q(t) = (t − t)∑j=0
∞

j!
q (t)(j)

k
k

j

(j)

(t) = j(t − t)q̇ ∑j=1
∞

j!
q (t)(j)

k
k

j−1

k+1 k+1 k k

k k k+1

q = a (t − t) + h b j(t − t)k+1 ∑i=0
p

i ∑j=0
∞

j!
q (t)(j)

k
k−i k

j
k ∑i=−1

r
i ∑j=1

∞
j!

q (t)(j)
k

k−i k
j−1

q = a + a (t − t) + h j b (t − t)k+1 ∑i=0
p

i ∑j=1
∞ (∑i=0

p
i j!

q (t)(j)
k

k−i k
j

k ∑i=−1
r

i j!
q (t)(j)

k
k−i k

j−1)
k

q = q(t) a + a () + b j() hk+1 k ∑i=0
p

i ∑j=1
∞

j!
q (t)(j)

k (∑i=0
p

i hk

t −tk−i k j ∑i=−1
r

i hk

t −tk−i k j−1) k
j

k+1

q(t) = (t − t) = h = q(t) + hk+1 ∑j=0
∞

j!
q (t)(j)

k
k+1 k

j ∑j=0
∞

j!
q (t)(j)

k

k
j

k ∑j=1
∞

j!
q (t)(j)

k

k
j

k+1 k+1

k

ϵ = q − q(t) = C q (t)h = C q(t) + C q (t)hk+1 k+1 k+1 ∑j=0
∞

j
(j)

k k
j

0 k ∑j=1
∞

j
(j)

k k
j

C0

Cj

= −1 + a

i=0

∑
p

i

= −1 + a + j b
j!
1 (

i=0

∑
p

i (
hk

t − tk−i k)
j

i=−1

∑
r

i (
hk

t − tk−i k)
j−1)

i i k+1 k+1

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

64 of 69 9/23/19, 11:53 AM

a polynomial of order not exceeding n. This is possible only if coefficients C are zero for all i=0,1,2,...,n. In fact, the

first n+1 equations given by the last two expressions are exactly those that are used for computing coefficients a

and b . For an integration formula of order n the first nozero coefficient in the series expressing the LTE is

therefore C which is also referred to as the error coefficient. The series expressing the LTE has infinitely many

terms. For the purpose of estimating the LTE we keep only the term with the lowest power of h .

Let us compute tthhee eerrrroorr ccooeeffifficciieenntt ffoorr tthhee bbaacckkwwaarrdd EEuulleerr ffoorrmmuullaa for which n=1 (this implies that the error

coefficient is denoted by j=n+1=2). Because the only nonzero coefficients in the formula are a and b we have p=0

and r=-1. The error coefficient is therefore

TThhee eerrrroorr ccooeeffifficciieenntt ffoorr tthhee ttrraappeezzooiiddaall ffoorrmmuullaa (n=2, p=0, r=0) is obtained as

Whenever the coefficients of the integration formula are recomputed the error coefficient must also be

recomputed. One piece is still missing before we can actually compute the LTE - the n+1-th derivative of q at t .

We can estimate it by applying polynomial interpolation of order n+1 to the latest n+2 values of q. Because LTE is

estimated after the Newton-Raphson algorithm solves the circuit at t , the values of q used in the interpolation

are q , ..., q . The n+1-th derivative of obtained polynomial p(t) is constant and does not depend on time. A

convenient way for computing it is to use divided differences. Suppose we have n+1 points (x y(x)), ..., (x , y(x)).

The Newton interpolation polynomial of order n that interpolates these points can be expressed as

where basis polynomials are defined as

Note that η (x)=1. The coefficients α are defined recursively with divided differences as

The n-th derivative of N (x) can be expressed as

Assuming values q , ..., q , q correspond to timepoints t , ..., t , t the LTE can be expressed as

Timestep control

The transient analysis algorithm can be summarized as follows.

Circuit solved up to and including t ;

Current timestep is h ;

Closest breakpoint in the future is at t ;

Maximal allowed integration algorithm order is maxord;

Choose initial timestep h ;

k := 0;

t := 0;

i

i

i

n+1

k

ϵ ≈ C q (t)hn+1 n+1
(n+1)

k k
n+1

0 -1

C = C = −1 + a + 2b = (−1 + 2b) =n+1 2 2!
1 (0 (

hk

t −tk k)2

−1 (
hk

t −tk+1 k)1) 2
1

−1 2
1

C = C = −1 + a + 3b + 3b = (−1 + 3b) =n+1 3 3!
1 (0 (

hk

t −tk k)3

−1 (
hk

t −tk+1 k)2

0 (
hk

t −tk k)2) 6
1

−1 12
1

k

k+1

k-n k+1

0 0 n n

N (x) = α η (x)n ∑i=0
n

i i

η (x) = (x − x)i ∏j=0
i−1

j

0 i

αi

y[x]i

y[x , x , ..., x]0 1 i

= y[x , x , ..., x]0 1 i

= y(x)i

=
x − xi 0

y[x , x , ..., x] − y[x , x , ..., x]1 2 i 0 1 i−1

n

N (x) = n!α = n!y[x , x , ..., x]
dtn
dn

n n 0 1 n

k-n k k+1 k-n k k+1

ϵ ≈ (n + 1)!C h q[t , t , ..., t]n+1 n+1 k
n+1

k−n k−n+1 k+1

k

k

br

0

0

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

65 of 69 9/23/19, 11:53 AM

wwhhiillee t <t ddoo

 // Are we crossing a breakpoint?

 iiff t +h >t tthheenn

 // Cut the timestep.

 h := t - t ;

 eennddiiff

 Solve circuit at t +h ;

 iiff NR algorithm converged slowly or failed to converge tthheenn

 // Timestep rejected, reduce algorithm order to 1.

 n := 1;

 Choose new timestep h < h ;

 h := h ;

 eellssee

 // Timestep accepted, increase algorithm order, if possible.

 n := min(n+1, maxord)

 Compute new timestep h so that LTE stays bounded;

 h := min(2h , h);

 iiff h is too small tthheenn

 Stop simulation (timestep too small);

 eennddiiff

 iiff t +h = t tthheenn

 // Integration order must be set to 1 after the circuit is solved at a breakpoint.

 n := 1;

 eennddiiff

 // Move to the next point on the timescale.

 t := t +h ;

 h := h ;

 k := k+1;

 eennddiiff

eennddwwhhiillee

One iteration of the while loop tries to solve the circuit at t +h . The circuit's solution at t is used by the NR

algorithm as the initial approximate for solving the circuit at t +h . After the NR algorithm finishes there are two

possible outcomes: the timestep is either rejected or accepted.

A timestep is rejected if

the Newton-Raphson algorithm fails to converge

the Newton-Raphson algorithm converges slowly which indicates that the initial approximate solution is far

from the obtained solution

The timestep is reduced and the integration order is set to 1. In the next iteration of the while loop the simulator

tries to solve the circuit with a shorter timestep.

If the timestep is not rejected, then it is accepted. With the circuit's solution at t =t +h (and all previous stored

solutions) a new timestep h is computed in such manner that the LTE is kept bounded at t =t +h . Index k is

increased and the simulator advances to the next timepoint.

k stop

k k br

k br k

k k

*
k

k
*

*

*
k

*

*

k k br

k+1 k k

k+1
*

k k k

k k

k+1 k k
*

k+2 k+1
*

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

66 of 69 9/23/19, 11:53 AM

Fig. 6: Excitation (e.g. independent voltage source) with two breakpoints (left). Passing the nearest breakpoint

(t ≥t) results in the timestep being cut so that t =t (right).

Sometimes the circuit's excitations contain discontinuities in their value or derivatives. Timepoints t where such

discontinuities occur are referred to as bbrreeaakkppooiinnttss. If a breakpoint lies on the time interval t < t < t the

timestep is shortened so that t =t . After the circuit's solution is accepted at a breakpoint the simulator reduces

the integration algorithm order to 1.

Choosing the order of the integration formula

For the first timepoint an integration formula of order n=1 is used (backward Euler formula) which does not require

the values of the derivative of q at past timepoints. Whenever a timepoint is rejected and at every breakpoint the

order of the integration formula used in the next run of the Newton-Raphosn algorithm is reduced to n=1.

Whenever a timepoint is accepted the order of the integration formula used for the next timepoint can be

increased by 1. The order of the integration formula is limited. In SPICE OPUS when an Adams-Moulton formula is

used the maximal allowed order is n=2. For Gear formulae the maximal allowed order is 6.

Predictor-corrector approach to numerical integration

The initial approximate solution used by the Newton-Raphson algorithm for solving the circuit at t is the

circuit's solution at t . This is assumed to be a good starting point for which we expect the Newton-Raphson

algorithm to require only a few iterations to reach convergence. If, however, we have some means for obtaining a

better initial approximate solution we can expect even faster convergence.

The method for computing the initial approximate solution is also referred to as the pprreeddiiccttoorr. The method used

for performing numerical integration is also referred to as the ccoorrrreeccttoorr.

When an Adams-Moulton formula of order n is used in SPICE OPUS as the corrector the Adams-Bashforth

explicit integration formula of order n is used as the predictor, but instead of applying it to components of qq we

apply it to components of the vector of uknowns (xx). Recall that the nonzero coefficients are a and b , ..., b . The

prediected solution is then expressed as

Because usually the derivative of the circuit's response with respect to time is not available we have to compute

it numerically with finite differences (i.e. divided differences of first order).

When a Gear formula of order n is used as the corrector, simple polynomial extrapolation of order n is used as

the predictor. Note that in our general approach to integration formulae we have to choose a , ..., a to obtain the

coefficients of polynomial extrapolation of order n. The predicted value is then computed as

k+1 b1 k+1 b1

b

k k+1

k+1 b

k+1

k

0 0 n-1

x = x + bk+1
pred

k ∑i=0
n−1

iẋk−i

≈ =ẋk−i t −tk−i k−i−1

x −xk−i k−i−1
hk−i−1

x −xk−i k−i−1

0 n

x = a xk+1
pred ∑i=0

n
i k−i

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

67 of 69 9/23/19, 11:53 AM

«« RREEAADD LLEESSSS

When predictor-corrector numerical integration is used the LTE can be computed in a fairly simple way. The LTE

of the predictor can be expressed as

where xx(t) denotes the exact response of the circuit. The LTE of the corrector, on the other, hand is given by

The difference between the value obtained from the predictor and the value obtained from the corrector (i.e. the

result of the Newton-Raphson algorithm) is

By comparing the last two expressions we can see that they differ only by a constant factor. Therefore the LTE of

the corrector can be expressed as

The obtained expression for computing the LTE does not require the computation of divided differences and is

therefore much simpler to compute.

CCiirrccuuiitt ooppttiimmiizzaattiioonn

10th Lecture

We introduce optimization algorithms for finding the minimum of a function of many variables. A short overview

of available algorithms is presented. We show how design requirements for a circuit can be formally defined. A

designer tunes these requirements by changing parameters of selected elements (design parameters).

Constraints are imposed on the design parameters due to the nature of the circuit. These constraints can

significantly reduce the number of design parameters. To automate the design process we introduce the cost

function which is then minimized by an optimization algorithm to find circuits that satisfy design requirements. A

live demonstration of the approach is given.

AAbboouutt tthhee ccoouurrssee

This is a compulsory course in the 1. semester of the Master’s degree curriculum “Electronics”. The aim is to

introduce students to the theoretical background of analog circuit simulation. The course also involves laboratory

work in the advanced field of circuit simulation and optimization with SPICE OPUS.

SSttaaffff

Lecturer:

prof. dr. Árpád Bürmen

ϵ = x − x(t) = C x (t)hk+1
pred

k+1
pred

k+1 n+1
pred (n+1)

k k
n+1

k+1

ϵ = x − x(t) = C x (t)hk+1 k+1 k+1 n+1
(n+1)

k k
n+1

x − x = ϵ − ϵ = (C − C)x (t)hk+1 k+1
pred

k+1 k+1
pred

n+1 n+1
pred (n+1)

k k
n+1

ϵ = x − xk+1
C −Cn+1 n+1

pred
Cn+1 (k+1 k+1

pred)

W1, January

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

68 of 69 9/23/19, 11:53 AM

Teaching Assistant:

as. dr. Žiga Rojec

Required knowledge

Basics of Electromagnetics Physics Mathematics I, II, III Basics of Programming

LLeeccttuurreess iinn PPDDFF

Lectures - Circuit Analysis and Optimization.pdf

Page by Rojec, 2018.

Circuit Analysis and Optimization http://fides.fe.uni-lj.si/~zigar/CAO/lectures.php

69 of 69 9/23/19, 11:53 AM

